什么是动态规划?
它与递归、记忆等有什么不同?
我读过维基百科上关于它的文章,但我还是不太明白。
什么是动态规划?
它与递归、记忆等有什么不同?
我读过维基百科上关于它的文章,但我还是不太明白。
当前回答
动态规划的关键是“重叠子问题”和“最优子结构”。问题的这些性质意味着最优解是由它的子问题的最优解组成的。例如,最短路径问题具有最优子结构。从A到C的最短路径是从A到某个节点B的最短路径,后面跟着从该节点B到C的最短路径。
更详细地说,要解决最短路径问题,您将:
求出从起始节点到触及它的每个节点的距离(比如从A到B和C) 求出这些节点到与其接触的节点的距离(从B到D和E,以及从C到E和F) 我们现在知道了从A到E的最短路径:它是我们访问过的某个节点x的A-x和x-E的最短和(B或C) 重复这个过程,直到到达最终的目标节点
因为我们是自下而上地工作,所以当需要使用这些子问题时,我们已经通过记忆它们得到了它们的解决方案。
记住,动态规划问题必须有重叠的子问题和最优的子结构。斐波那契数列的生成不是一个动态规划问题;它利用记忆,因为它有重叠的子问题,但它没有最优的子结构(因为不涉及优化问题)。
其他回答
动态规划是求解具有重叠子问题的问题的一种技术。 动态规划算法只解决每个子问题一次,然后 将答案保存在一个表(数组)中。 避免每次遇到子问题时重新计算答案的工作。 动态规划的基本思想是: 避免计算相同的东西两次,通常是通过保留子问题的已知结果表。
动态规划算法开发的七个步骤如下:
建立递归属性,给出问题实例的解决方案。 根据递归特性开发递归算法 看看同一个问题的实例是否在递归调用中被一次又一次地解决 开发一个记忆递归算法 查看在内存中存储数据的模式 将记忆递归算法转化为迭代算法 根据需要使用存储对迭代算法进行优化(存储优化)
记忆是指存储函数调用之前的结果(给定相同的输入,真正的函数总是返回相同的结果)。在存储结果之前,算法的复杂性并没有什么不同。
递归是函数调用自身的方法,通常使用较小的数据集。由于大多数递归函数可以转换为类似的迭代函数,这对算法复杂性也没有影响。
动态规划是解决较容易解决的子问题,并由此建立答案的过程。大多数DP算法将处于贪婪算法(如果存在的话)和指数算法(枚举所有可能性并找到最佳的一个)之间的运行时间。
DP算法可以用递归来实现,但它们不必这样做。 DP算法不能通过记忆来加速,因为每个子问题只被解决(或“solve”函数被调用)一次。
简而言之,就是递归记忆和动态规划的区别
顾名思义,动态规划是使用前面的计算值动态地构造下一个新的解决方案
在哪里应用动态规划:如果你的解决方案是基于最优子结构和重叠子问题,那么在这种情况下,使用之前的计算值将是有用的,这样你就不必重新计算它。这是一种自下而上的方法。假设你需要计算fib(n)在这种情况下,你所需要做的就是将之前计算的fib(n-1)和fib(n-2)的值相加
递归:基本上将你的问题细分为更小的部分,以轻松解决它,但请记住,如果我们在其他递归调用中有相同的值,它不会避免重新计算。
记忆:基本上将旧的计算递归值存储在表中被称为记忆,这将避免重新计算,如果它已经被以前的一些调用计算过,因此任何值都将计算一次。因此,在计算之前,我们检查这个值是否已经计算过,如果已经计算过,那么我们从表中返回相同的值,而不是重新计算。这也是一种自上而下的方法
动态规划的关键是“重叠子问题”和“最优子结构”。问题的这些性质意味着最优解是由它的子问题的最优解组成的。例如,最短路径问题具有最优子结构。从A到C的最短路径是从A到某个节点B的最短路径,后面跟着从该节点B到C的最短路径。
更详细地说,要解决最短路径问题,您将:
求出从起始节点到触及它的每个节点的距离(比如从A到B和C) 求出这些节点到与其接触的节点的距离(从B到D和E,以及从C到E和F) 我们现在知道了从A到E的最短路径:它是我们访问过的某个节点x的A-x和x-E的最短和(B或C) 重复这个过程,直到到达最终的目标节点
因为我们是自下而上地工作,所以当需要使用这些子问题时,我们已经通过记忆它们得到了它们的解决方案。
记住,动态规划问题必须有重叠的子问题和最优的子结构。斐波那契数列的生成不是一个动态规划问题;它利用记忆,因为它有重叠的子问题,但它没有最优的子结构(因为不涉及优化问题)。
动态规划是一种在递归算法中避免多次计算同一子问题的技术。
让我们以斐波那契数为例:找到定义的第n个斐波那契数
Fn = Fn-1 + Fn-2, F0 = 0, F1 = 1
递归
最明显的方法是递归:
def fibonacci(n):
if n == 0:
return 0
if n == 1:
return 1
return fibonacci(n - 1) + fibonacci(n - 2)
动态规划
自顶向下——记忆
递归做了很多不必要的计算,因为给定的斐波那契数将被计算多次。一个简单的改进方法是缓存结果:
cache = {}
def fibonacci(n):
if n == 0:
return 0
if n == 1:
return 1
if n in cache:
return cache[n]
cache[n] = fibonacci(n - 1) + fibonacci(n - 2)
return cache[n]
自底向上
更好的方法是通过按正确的顺序计算结果来摆脱递归:
cache = {}
def fibonacci(n):
cache[0] = 0
cache[1] = 1
for i in range(2, n + 1):
cache[i] = cache[i - 1] + cache[i - 2]
return cache[n]
我们甚至可以使用常数空间,在整个过程中只存储必要的部分结果:
def fibonacci(n):
fi_minus_2 = 0
fi_minus_1 = 1
for i in range(2, n + 1):
fi = fi_minus_1 + fi_minus_2
fi_minus_1, fi_minus_2 = fi, fi_minus_1
return fi
如何应用动态规划? 找出问题中的递归。 自顶向下:将每个子问题的答案存储在一个表中,以避免重新计算。 自底向上:找到评估结果的正确顺序,以便在需要时获得部分结果。
动态规划通常适用于具有固有的从左到右顺序的问题,如字符串、树或整数序列。如果单纯递归算法不能多次计算同一子问题,动态规划就没有帮助。
我做了一个问题集合来帮助理解逻辑:https://github.com/tristanguigue/dynamic-programing