这是C++代码的一块 显示一些非常特殊的行为

出于某种原因,对数据进行分类(之前奇迹般地使主环速度快近六倍:

#include <algorithm>
#include <ctime>
#include <iostream>

int main()
{
    // Generate data
    const unsigned arraySize = 32768;
    int data[arraySize];

    for (unsigned c = 0; c < arraySize; ++c)
        data[c] = std::rand() % 256;

    // !!! With this, the next loop runs faster.
    std::sort(data, data + arraySize);

    // Test
    clock_t start = clock();
    long long sum = 0;
    for (unsigned i = 0; i < 100000; ++i)
    {
        for (unsigned c = 0; c < arraySize; ++c)
        {   // Primary loop.
            if (data[c] >= 128)
                sum += data[c];
        }
    }

    double elapsedTime = static_cast<double>(clock()-start) / CLOCKS_PER_SEC;

    std::cout << elapsedTime << '\n';
    std::cout << "sum = " << sum << '\n';
}
  • 不无std::sort(data, data + arraySize);代码在11.54秒内运行
  • 根据分类数据 代码在1.93秒内运行

(分类本身需要的时间比这个通过数组的时间要长, 所以如果我们需要计算未知数组, 它实际上不值得做 。)


起初,我以为这只是一种语言或编译器异常, 所以我尝试了爪哇:

import java.util.Arrays;
import java.util.Random;

public class Main
{
    public static void main(String[] args)
    {
        // Generate data
        int arraySize = 32768;
        int data[] = new int[arraySize];

        Random rnd = new Random(0);
        for (int c = 0; c < arraySize; ++c)
            data[c] = rnd.nextInt() % 256;

        // !!! With this, the next loop runs faster
        Arrays.sort(data);

        // Test
        long start = System.nanoTime();
        long sum = 0;
        for (int i = 0; i < 100000; ++i)
        {
            for (int c = 0; c < arraySize; ++c)
            {   // Primary loop.
                if (data[c] >= 128)
                    sum += data[c];
            }
        }

        System.out.println((System.nanoTime() - start) / 1000000000.0);
        System.out.println("sum = " + sum);
    }
}

其结果类似,但不太极端。


我第一种想法是 分类能把数据带进缓存缓存,但那是愚蠢的 因为阵列是刚刚产生的。

  • 这是怎么回事?
  • 为什么处理一个分类阵列的速度要快于处理一个未排序阵列的速度?

守则正在总结一些独立的术语,因此命令不应重要。


相关/后续行动不同/以后的编译者和选项的相同效果:


当前回答

在ARARAR上,不需要分支,因为每项教学都有一个4位条件字段,该字段测试(零成本)任何(零成本)16种不同条件处理器状态登记簿中可能会出现这种情况, 如果指令的条件是假的, 则跳过指令 。 这样就不再需要短的分支, 并且不会为此算法进行分支预测 。因此,这种算法的分类版本将比ARM上未分类版本的运行慢,因为分类的间接费用增加。

这个算法的内环在ARM组装语言中 看起来像是:

MOV R0, #0   // R0 = sum = 0
MOV R1, #0   // R1 = c = 0
ADR R2, data // R2 = addr of data array (put this instruction outside outer loop)
.inner_loop  // Inner loop branch label
    LDRB R3, [R2, R1]   // R3 = data[c]
    CMP R3, #128        // compare R3 to 128
    ADDGE R0, R0, R3    // if R3 >= 128, then sum += data[c] -- no branch needed!
    ADD R1, R1, #1      // c++
    CMP R1, #arraySize  // compare c to arraySize
    BLT inner_loop      // Branch to inner_loop if c < arraySize

但这其实是大局的一部分:

CMP处理器状态登记册(PSR)中的状态位数总是更新,因为这是它们的目的,但大多数其他指令都不触动 PSR,除非添加一个选项S指示的后缀,规定应根据指示的结果更新PSR。就像4位条件的后缀一样,能够执行指示而不影响PSR,这个机制减少了对ARM分支的需求,也便利了硬件一级的不按订单发送,因为执行一些操作X更新状态位数后,随后(或平行)你可以做一系列其他工作,这些工作显然不应影响(或受到)状态位数的影响,然后可以测试X早先设定的状态位数状态状态。

条件测试字段和可选的“ 设定状态位” 字段可以合并, 例如 :

  • ADD R1, R2, R3表演 表演R1 = R2 + R3不更新任何状态位元 。
  • ADDGE R1, R2, R3仅在影响状态位数的先前指令导致大于或等于条件时,才执行相同的操作。
  • ADDS R1, R2, R3执行添加,然后更新N, Z, CV根据结果是否为负、零、载(未签字添加)或oVerflowed(已签署添加),在处理者地位登记册中的标记。
  • ADDSGE R1, R2, R3仅在以下情况下执行添加:GE测试是真实的, 然后根据添加结果更新状态比特 。

大多数处理器结构没有这种能力来说明是否应该为特定操作更新状态位元,这可能需要写入额外的代码来保存和随后恢复状态位元,或者可能需要额外的分支,或者可能限制处理器的运行效率:大多数 CPU 指令设置的架构的副作用之一是,在大多数指令之后强制更新状态位元,是很难分离哪些指令可以平行运行而不相互干扰的。更新状态位元具有副作用,因此对代码具有线性效果。ARM在任何指令上混合和匹配无分支条件测试的能力,在任何指令非常强大后,可以更新或不更新状态位数,对集会语言程序员和编译员来说,都极为强大,并制作非常高效的代码。

当您不需要分行时, 您可以避免冲刷管道的时间成本, 否则就是短的分支, 您也可以避免许多投机性蒸发形式的设计复杂性。 缓解最近发现的很多处理器弱点( 特例等)的最初天真效果影响 表明现代处理器的性能在多大程度上取决于复杂的投机性评估逻辑。 由于输油管很短,对分支的需求也大大减少, ARM不需要像 CISC 处理器那样依赖投机性评估。 ( 当然, 高端的ARM 实施过程包括投机性评估, 但是它只是绩效故事中的一小部分 ) 。

如果你曾经想过为什么ARM如此成功,那么这两种机制(加上另一个允许你“轮回”左转或右转的机制,任何算术操作员的两个论点之一或以零额外费用抵消内存存存取操作员的两种论点之一)的辉煌效力和互动作用是故事的一大部分,因为它们是ARM结构效率的最大来源。 1983年ARM ISA原设计师Steve Furber和Roger(现为Sophie)Wilson的聪明才智无论怎样强调都不为过。

其他回答

在分类的情况下,你可以做的比依靠成功的分支预测或任何无分支比较的把戏:完全删除分支。

事实上,阵阵列被分割在一个毗连区内,data < 128data >= 128。因此,您应该用 a 来找到分区点脑细胞细胞研究(使用Lg(arraySize) = 15比较),然后从该点做一个直线积累。

类似的东西( 未检查 )

int i= 0, j, k= arraySize;
while (i < k)
{
  j= (i + k) >> 1;
  if (data[j] >= 128)
    k= j;
  else
    i= j;
}
sum= 0;
for (; i < arraySize; i++)
  sum+= data[i];

或, 略微糊涂

int i, k, j= (i + k) >> 1;
for (i= 0, k= arraySize; i < k; (data[j] >= 128 ? k : i)= j)
  j= (i + k) >> 1;
for (sum= 0; i < arraySize; i++)
  sum+= data[i];

一种既快又快的方法,约近分类或未排序的解决方案为 :sum= 3137536;(假设分布真正统一,预计价值为191.5的16384个样本):-)

除了树枝预测可能会减慢你的速度之外 分解阵列还有另一个优势

您可以有一个停止状态, 而不是仅仅检查值, 这样你只能环绕相关数据, 忽略其它数据 。
分支预测只会错失一次。

 // sort backwards (higher values first), may be in some other part of the code
 std::sort(data, data + arraySize, std::greater<int>());

 for (unsigned c = 0; c < arraySize; ++c) {
       if (data[c] < 128) {
              break;
       }
       sum += data[c];               
 }

快速和简单理解的答案(阅读其他细节)

这一概念被称为子分支预测

分支预测是一种优化技术,它预言代码在被确知之前将走的道路。 这一点很重要,因为在代码执行过程中,机器预设了几条代码声明并将其储存在管道中。

问题出在有条件的分支中,有两种可能的路径或代码部分可以执行。

当预测是真实的, 优化技术 完成。

当预测是虚假的,用简单的方式解释, 管道中储存的代码声明被证明是错误的, 而实际的代码必须全部重新加载, 这需要很多时间。

正如常识所显示的,对某类物品的预测比对某类未分类物品的预测更准确。

分支预测可视化:

已分类
sorted未排序unsorted

其他答复的假设是,一个人需要对数据进行分类是不正确的。

以下代码不排序整个阵列,但只排序其中的200个元素部分,因此运行速度最快。

只对 K 元素部分进行排序,以线性时间完成预处理,O(n),而不是O(n.log(n))排序整个阵列需要时间 。

#include <algorithm>
#include <ctime>
#include <iostream>

int main() {
    int data[32768]; const int l = sizeof data / sizeof data[0];

    for (unsigned c = 0; c < l; ++c)
        data[c] = std::rand() % 256;

    // sort 200-element segments, not the whole array
    for (unsigned c = 0; c + 200 <= l; c += 200)
        std::sort(&data[c], &data[c + 200]);

    clock_t start = clock();
    long long sum = 0;

    for (unsigned i = 0; i < 100000; ++i) {
        for (unsigned c = 0; c < sizeof data / sizeof(int); ++c) {
            if (data[c] >= 128)
                sum += data[c];
        }
    }

    std::cout << static_cast<double>(clock() - start) / CLOCKS_PER_SEC << std::endl;
    std::cout << "sum = " << sum << std::endl;
}

这个“证明”也与任何算法问题无关, 比如排序顺序, 并且确实是分支预测。

分部门预测。

以排序数组数组, 条件data[c] >= 128第一个是false一连串的数值,然后变成true后期所有值。 这很容易预测。 使用一个未排序的阵列, 您支付分支成本 。