这是C++代码的一块 显示一些非常特殊的行为
出于某种原因,对数据进行分类(之前奇迹般地使主环速度快近六倍:
#include <algorithm>
#include <ctime>
#include <iostream>
int main()
{
// Generate data
const unsigned arraySize = 32768;
int data[arraySize];
for (unsigned c = 0; c < arraySize; ++c)
data[c] = std::rand() % 256;
// !!! With this, the next loop runs faster.
std::sort(data, data + arraySize);
// Test
clock_t start = clock();
long long sum = 0;
for (unsigned i = 0; i < 100000; ++i)
{
for (unsigned c = 0; c < arraySize; ++c)
{ // Primary loop.
if (data[c] >= 128)
sum += data[c];
}
}
double elapsedTime = static_cast<double>(clock()-start) / CLOCKS_PER_SEC;
std::cout << elapsedTime << '\n';
std::cout << "sum = " << sum << '\n';
}
- 不无
std::sort(data, data + arraySize);
代码在11.54秒内运行
- 根据分类数据 代码在1.93秒内运行
(分类本身需要的时间比这个通过数组的时间要长, 所以如果我们需要计算未知数组, 它实际上不值得做 。)
起初,我以为这只是一种语言或编译器异常, 所以我尝试了爪哇:
import java.util.Arrays;
import java.util.Random;
public class Main
{
public static void main(String[] args)
{
// Generate data
int arraySize = 32768;
int data[] = new int[arraySize];
Random rnd = new Random(0);
for (int c = 0; c < arraySize; ++c)
data[c] = rnd.nextInt() % 256;
// !!! With this, the next loop runs faster
Arrays.sort(data);
// Test
long start = System.nanoTime();
long sum = 0;
for (int i = 0; i < 100000; ++i)
{
for (int c = 0; c < arraySize; ++c)
{ // Primary loop.
if (data[c] >= 128)
sum += data[c];
}
}
System.out.println((System.nanoTime() - start) / 1000000000.0);
System.out.println("sum = " + sum);
}
}
其结果类似,但不太极端。
我第一种想法是 分类能把数据带进缓存缓存,但那是愚蠢的 因为阵列是刚刚产生的。
- 这是怎么回事?
- 为什么处理一个分类阵列的速度要快于处理一个未排序阵列的速度?
守则正在总结一些独立的术语,因此命令不应重要。
相关/后续行动不同/以后的编译者和选项的相同效果:
我用MATLAB 2011b 和我的MacBook Pro(Intel i7, 64位, 2.4 GHz) 尝试了以下MATLAB 代码的相同代码 :
% Processing time with Sorted data vs unsorted data
%==========================================================================
% Generate data
arraySize = 32768
sum = 0;
% Generate random integer data from range 0 to 255
data = randi(256, arraySize, 1);
%Sort the data
data1= sort(data); % data1= data when no sorting done
%Start a stopwatch timer to measure the execution time
tic;
for i=1:100000
for j=1:arraySize
if data1(j)>=128
sum=sum + data1(j);
end
end
end
toc;
ExeTimeWithSorting = toc - tic;
上述MATLAB代码的结果如下:
a: Elapsed time (without sorting) = 3479.880861 seconds.
b: Elapsed time (with sorting ) = 2377.873098 seconds.
校对:Soup
a: Elapsed time (without sorting) = 19.8761 sec.
b: Elapsed time (with sorting ) = 7.37778 sec.
基于这个,看来MATLAB几乎是175乘175次低于 C 执行的慢于 C 执行,没有排序和350乘350次换句话说,其效果(分支预测)是:1.46x执行和2.7x执行《公约》的《公约》。
巴恩·斯特鲁斯特鲁斯特鲁普的回答对此问题:
这听起来像面试问题。是真的吗?你怎么知道?回答效率问题而不首先做一些测量是不明智的,所以知道如何衡量是很重要的。
于是,我用百万整数的矢量尝试过,然后得到:
Already sorted 32995 milliseconds
Shuffled 125944 milliseconds
Already sorted 18610 milliseconds
Shuffled 133304 milliseconds
Already sorted 17942 milliseconds
Shuffled 107858 milliseconds
我跑了好几次才确定。 是的,这个现象是真实的。我的关键代码是:
void run(vector<int>& v, const string& label)
{
auto t0 = system_clock::now();
sort(v.begin(), v.end());
auto t1 = system_clock::now();
cout << label
<< duration_cast<microseconds>(t1 — t0).count()
<< " milliseconds\n";
}
void tst()
{
vector<int> v(1'000'000);
iota(v.begin(), v.end(), 0);
run(v, "already sorted ");
std::shuffle(v.begin(), v.end(), std::mt19937{ std::random_device{}() });
run(v, "shuffled ");
}
至少这个编译器、 标准库和优化设置是真实存在的。 不同的执行可以而且确实提供了不同的答案。 事实上,有人做了更系统的研究( 快速的网络搜索会找到它) , 而大多数执行都显示了这种效果。
其中一个原因是分支预测: 类算法中的关键操作是“if(v[i] < pivot]) …”
对于排序序列,测试总是真实的,而对于随机序列,选定的分支则随机变化。
另一个原因是,当矢量已经分类后,我们从不需要将元素移到正确位置。这些小细节的影响是我们看到的5或6个系数。
Quicksort(以及一般分类)是一项复杂的研究,吸引了计算机科学中最伟大的一些思想。 一种良好的功能是选择良好的算法和关注硬件的运行效果的结果。
如果您想要写入高效代码, 您需要了解一些关于机器结构的知识 。
在分类的情况下,你可以做的比依靠成功的分支预测或任何无分支比较的把戏:完全删除分支。
事实上,阵阵列被分割在一个毗连区内,data < 128
以data >= 128
。因此,您应该用 a 来找到分区点脑细胞细胞研究(使用Lg(arraySize) = 15
比较),然后从该点做一个直线积累。
类似的东西( 未检查 )
int i= 0, j, k= arraySize;
while (i < k)
{
j= (i + k) >> 1;
if (data[j] >= 128)
k= j;
else
i= j;
}
sum= 0;
for (; i < arraySize; i++)
sum+= data[i];
或, 略微糊涂
int i, k, j= (i + k) >> 1;
for (i= 0, k= arraySize; i < k; (data[j] >= 128 ? k : i)= j)
j= (i + k) >> 1;
for (sum= 0; i < arraySize; i++)
sum+= data[i];
一种既快又快的方法,约近分类或未排序的解决方案为 :sum= 3137536;
(假设分布真正统一,预计价值为191.5的16384个样本):-)
是关于分支预测的 是什么?
分支预测器是古老的改进性能的技术之一,在现代建筑中仍然具有相关性。 虽然简单的预测技术能提供快速搜索和电力效率,但它们的误判率很高。
另一方面,复杂的分支预测 — — 无论是基于神经的预测还是两级分支预测的变异 — — 提供了更好的预测准确性,但是它们消耗更多的能量和复杂性会成倍增加。
此外,在复杂的预测技术中,预测分支所需的时间本身非常高 — — 从2到5个周期不等 — — 这与实际分支的执行时间相当。
部门预测基本上是一个优化(最小化)问题,重点是实现尽可能低的误差率、低电耗和最低资源复杂性低。
确实有三种不同的分支:
附加条件的分支- 根据运行时间条件,PC(程序表计数器)被修改为指示流中前方的地址。
后向附加条件分支- PC被修改为指令流的后向点。分支基于某种条件,例如当循环结束时的测试显示循环应该再次执行时,分支会向后到程序循环开始处。
无条件分支- 包括跳跃、程序呼叫和没有特定条件的返回。 例如, 无条件跳跃指令可能以组合语言编码为简单的“ jmp ” , 且指令流必须直接指向跳跃指令指向的目标位置, 而有条件跳跃, 代号为“ jmpne ” , 只有在对先前“ 比较” 指令中两个数值进行比较的结果显示数值不相等时, 才会改变教学流的方向。 (x86 结构使用的分段处理方案增加了额外的复杂度, 因为跳跃可以是“ 接近” (在段内) , 也可以是“ 远” (在段外) 。 每种类型都对分支预测算法有不同的影响 。
静态/动力支部:微处理器在第一次遇到有条件的分支时使用静态分支预测,而动态分支预测用于随后执行有条件的分支代码。
参考文献: