我如何打印一个整数与逗号作为千分隔符?
1234567 ⟶ 1,234,567
在句点和逗号之间决定不需要特定于区域设置。
我如何打印一个整数与逗号作为千分隔符?
1234567 ⟶ 1,234,567
在句点和逗号之间决定不需要特定于区域设置。
当前回答
只是long的子类(或者float,等等)。这是非常实用的,因为通过这种方式,您仍然可以在数学操作中使用您的数字(因此也可以使用现有的代码),但它们都将在终端中很好地打印出来。
>>> class number(long):
def __init__(self, value):
self = value
def __repr__(self):
s = str(self)
l = [x for x in s if x in '1234567890']
for x in reversed(range(len(s)-1)[::3]):
l.insert(-x, ',')
l = ''.join(l[1:])
return ('-'+l if self < 0 else l)
>>> number(-100000)
-100,000
>>> number(-100)
-100
>>> number(-12345)
-12,345
>>> number(928374)
928,374
>>> 345
其他回答
python中的Babel模块具有根据所提供的语言环境应用逗号的功能。
要安装babel,请运行以下命令。
pip install babel
使用
format_currency(1234567.89, 'USD', locale='en_US')
# Output: $1,234,567.89
format_currency(1234567.89, 'USD', locale='es_CO')
# Output: US$ 1.234.567,89 (raw output US$\xa01.234.567,89)
format_currency(1234567.89, 'INR', locale='en_IN')
# Output: ₹12,34,567.89
我使用的是python 2.5,所以我无法访问内置格式。
我查看了Django代码intcomma(下面代码中的intcomma_recurs),意识到它的效率很低,因为它是递归的,而且每次运行时都编译正则表达式也不是一件好事。这并不是一个必要的“问题”,因为django并没有真正关注这种低级性能。此外,我原本预计性能会有10倍的差异,但实际上只慢了3倍。
出于好奇,我实现了几个版本的intcomma,看看使用regex时的性能优势是什么。我的测试数据显示,这项任务有一点优势,但令人惊讶的是,优势并不大。
我也很高兴地看到了我的怀疑:在没有正则表达式的情况下,使用反向xrange方法是不必要的,但它确实使代码看起来更好,代价是性能下降了10%左右。
另外,我假设你传入的是一个字符串,看起来有点像一个数字。其他结果未定。
from __future__ import with_statement
from contextlib import contextmanager
import re,time
re_first_num = re.compile(r"\d")
def intcomma_noregex(value):
end_offset, start_digit, period = len(value),re_first_num.search(value).start(),value.rfind('.')
if period == -1:
period=end_offset
segments,_from_index,leftover = [],0,(period-start_digit) % 3
for _index in xrange(start_digit+3 if not leftover else start_digit+leftover,period,3):
segments.append(value[_from_index:_index])
_from_index=_index
if not segments:
return value
segments.append(value[_from_index:])
return ','.join(segments)
def intcomma_noregex_reversed(value):
end_offset, start_digit, period = len(value),re_first_num.search(value).start(),value.rfind('.')
if period == -1:
period=end_offset
_from_index,segments = end_offset,[]
for _index in xrange(period-3,start_digit,-3):
segments.append(value[_index:_from_index])
_from_index=_index
if not segments:
return value
segments.append(value[:_from_index])
return ','.join(reversed(segments))
re_3digits = re.compile(r'(?<=\d)\d{3}(?!\d)')
def intcomma(value):
segments,last_endoffset=[],len(value)
while last_endoffset > 3:
digit_group = re_3digits.search(value,0,last_endoffset)
if not digit_group:
break
segments.append(value[digit_group.start():last_endoffset])
last_endoffset=digit_group.start()
if not segments:
return value
if last_endoffset:
segments.append(value[:last_endoffset])
return ','.join(reversed(segments))
def intcomma_recurs(value):
"""
Converts an integer to a string containing commas every three digits.
For example, 3000 becomes '3,000' and 45000 becomes '45,000'.
"""
new = re.sub("^(-?\d+)(\d{3})", '\g<1>,\g<2>', str(value))
if value == new:
return new
else:
return intcomma(new)
@contextmanager
def timed(save_time_func):
begin=time.time()
try:
yield
finally:
save_time_func(time.time()-begin)
def testset_xsimple(func):
func('5')
def testset_simple(func):
func('567')
def testset_onecomma(func):
func('567890')
def testset_complex(func):
func('-1234567.024')
def testset_average(func):
func('-1234567.024')
func('567')
func('5674')
if __name__ == '__main__':
print 'Test results:'
for test_data in ('5','567','1234','1234.56','-253892.045'):
for func in (intcomma,intcomma_noregex,intcomma_noregex_reversed,intcomma_recurs):
print func.__name__,test_data,func(test_data)
times=[]
def overhead(x):
pass
for test_run in xrange(1,4):
for func in (intcomma,intcomma_noregex,intcomma_noregex_reversed,intcomma_recurs,overhead):
for testset in (testset_xsimple,testset_simple,testset_onecomma,testset_complex,testset_average):
for x in xrange(1000): # prime the test
testset(func)
with timed(lambda x:times.append(((test_run,func,testset),x))):
for x in xrange(50000):
testset(func)
for (test_run,func,testset),_delta in times:
print test_run,func.__name__,testset.__name__,_delta
下面是测试结果:
intcomma 5 5
intcomma_noregex 5 5
intcomma_noregex_reversed 5 5
intcomma_recurs 5 5
intcomma 567 567
intcomma_noregex 567 567
intcomma_noregex_reversed 567 567
intcomma_recurs 567 567
intcomma 1234 1,234
intcomma_noregex 1234 1,234
intcomma_noregex_reversed 1234 1,234
intcomma_recurs 1234 1,234
intcomma 1234.56 1,234.56
intcomma_noregex 1234.56 1,234.56
intcomma_noregex_reversed 1234.56 1,234.56
intcomma_recurs 1234.56 1,234.56
intcomma -253892.045 -253,892.045
intcomma_noregex -253892.045 -253,892.045
intcomma_noregex_reversed -253892.045 -253,892.045
intcomma_recurs -253892.045 -253,892.045
1 intcomma testset_xsimple 0.0410001277924
1 intcomma testset_simple 0.0369999408722
1 intcomma testset_onecomma 0.213000059128
1 intcomma testset_complex 0.296000003815
1 intcomma testset_average 0.503000020981
1 intcomma_noregex testset_xsimple 0.134000062943
1 intcomma_noregex testset_simple 0.134999990463
1 intcomma_noregex testset_onecomma 0.190999984741
1 intcomma_noregex testset_complex 0.209000110626
1 intcomma_noregex testset_average 0.513000011444
1 intcomma_noregex_reversed testset_xsimple 0.124000072479
1 intcomma_noregex_reversed testset_simple 0.12700009346
1 intcomma_noregex_reversed testset_onecomma 0.230000019073
1 intcomma_noregex_reversed testset_complex 0.236999988556
1 intcomma_noregex_reversed testset_average 0.56299996376
1 intcomma_recurs testset_xsimple 0.348000049591
1 intcomma_recurs testset_simple 0.34600019455
1 intcomma_recurs testset_onecomma 0.625
1 intcomma_recurs testset_complex 0.773999929428
1 intcomma_recurs testset_average 1.6890001297
1 overhead testset_xsimple 0.0179998874664
1 overhead testset_simple 0.0190000534058
1 overhead testset_onecomma 0.0190000534058
1 overhead testset_complex 0.0190000534058
1 overhead testset_average 0.0309998989105
2 intcomma testset_xsimple 0.0360000133514
2 intcomma testset_simple 0.0369999408722
2 intcomma testset_onecomma 0.207999944687
2 intcomma testset_complex 0.302000045776
2 intcomma testset_average 0.523000001907
2 intcomma_noregex testset_xsimple 0.139999866486
2 intcomma_noregex testset_simple 0.141000032425
2 intcomma_noregex testset_onecomma 0.203999996185
2 intcomma_noregex testset_complex 0.200999975204
2 intcomma_noregex testset_average 0.523000001907
2 intcomma_noregex_reversed testset_xsimple 0.130000114441
2 intcomma_noregex_reversed testset_simple 0.129999876022
2 intcomma_noregex_reversed testset_onecomma 0.236000061035
2 intcomma_noregex_reversed testset_complex 0.241999864578
2 intcomma_noregex_reversed testset_average 0.582999944687
2 intcomma_recurs testset_xsimple 0.351000070572
2 intcomma_recurs testset_simple 0.352999925613
2 intcomma_recurs testset_onecomma 0.648999929428
2 intcomma_recurs testset_complex 0.808000087738
2 intcomma_recurs testset_average 1.81900000572
2 overhead testset_xsimple 0.0189998149872
2 overhead testset_simple 0.0189998149872
2 overhead testset_onecomma 0.0190000534058
2 overhead testset_complex 0.0179998874664
2 overhead testset_average 0.0299999713898
3 intcomma testset_xsimple 0.0360000133514
3 intcomma testset_simple 0.0360000133514
3 intcomma testset_onecomma 0.210000038147
3 intcomma testset_complex 0.305999994278
3 intcomma testset_average 0.493000030518
3 intcomma_noregex testset_xsimple 0.131999969482
3 intcomma_noregex testset_simple 0.136000156403
3 intcomma_noregex testset_onecomma 0.192999839783
3 intcomma_noregex testset_complex 0.202000141144
3 intcomma_noregex testset_average 0.509999990463
3 intcomma_noregex_reversed testset_xsimple 0.125999927521
3 intcomma_noregex_reversed testset_simple 0.126999855042
3 intcomma_noregex_reversed testset_onecomma 0.235999822617
3 intcomma_noregex_reversed testset_complex 0.243000030518
3 intcomma_noregex_reversed testset_average 0.56200003624
3 intcomma_recurs testset_xsimple 0.337000131607
3 intcomma_recurs testset_simple 0.342000007629
3 intcomma_recurs testset_onecomma 0.609999895096
3 intcomma_recurs testset_complex 0.75
3 intcomma_recurs testset_average 1.68300008774
3 overhead testset_xsimple 0.0189998149872
3 overhead testset_simple 0.018000125885
3 overhead testset_onecomma 0.018000125885
3 overhead testset_complex 0.0179998874664
3 overhead testset_average 0.0299999713898
当地unaware
'{:,}'.format(value) # For Python ≥2.7
f'{value:,}' # For Python ≥3.6
区域设置感知
import locale
locale.setlocale(locale.LC_ALL, '') # Use '' for auto, or force e.g. to 'en_US.UTF-8'
'{:n}'.format(value) # For Python ≥2.7
f'{value:n}' # For Python ≥3.6
参考
根据格式规范迷你语言,
','选项表示使用逗号作为千位分隔符。对于支持区域设置的分隔符,请使用'n'整数表示类型。
这是我处理浮点数的方法。尽管,老实说,我不确定它适用于哪个版本——我使用的是2.7:
my_number = 4385893.382939491
my_string = '{:0,.2f}'.format(my_number)
返回:4385893 .38点
更新:我最近有一个关于这种格式的问题(不能告诉你确切的原因),但能够通过删除0来修复它:
my_string = '{:,.2f}'.format(my_number)
我相信这一定有一个标准的库函数,但尝试自己用递归写它很有趣,所以这是我想到的:
def intToStringWithCommas(x):
if type(x) is not int and type(x) is not long:
raise TypeError("Not an integer!")
if x < 0:
return '-' + intToStringWithCommas(-x)
elif x < 1000:
return str(x)
else:
return intToStringWithCommas(x / 1000) + ',' + '%03d' % (x % 1000)
话虽如此,如果其他人确实找到了一种标准的方法,那么您应该使用它。