为了测试一些功能,我想从一个字符串创建一个DataFrame。假设我的测试数据是这样的:

TESTDATA="""col1;col2;col3
1;4.4;99
2;4.5;200
3;4.7;65
4;3.2;140
"""

什么是最简单的方法读取数据到熊猫数据框架?


当前回答

在一行中,但首先导入io

import pandas as pd
import io   

TESTDATA="""col1;col2;col3
1;4.4;99
2;4.5;200
3;4.7;65
4;3.2;140
"""

df = pd.read_csv(io.StringIO(TESTDATA), sep=";")
print(df)

其他回答

分割方法

data = input_string
df = pd.DataFrame([x.split(';') for x in data.split('\n')])
print(df)

Emample:

text = [ ['This is the NLP TASKS ARTICLE written by Anjum**'] ,['IN this article I”ll be explaining various DATA-CLEANING techniques '], ['So stay tuned for FURther More && '],['Nah I dont think he goes to usf ; he lives around']]
df = pd.DataFrame({'text':text})

输出

这个答案适用于手动输入字符串,而不是从其他地方读取字符串。

传统的可变宽度CSV对于将数据存储为字符串变量是不可读的。特别是在.py文件中使用时,请考虑固定宽度的管道分隔数据。各种ide和编辑器可能都有一个插件,可以将管道分隔的文本格式化为一个整洁的表格。

使用read_csv

将以下文件存储在一个实用模块中,例如util/pandas.py。函数的文档字符串中包含了一个示例。

import io
import re

import pandas as pd


def read_psv(str_input: str, **kwargs) -> pd.DataFrame:
    """Read a Pandas object from a pipe-separated table contained within a string.

    Input example:
        | int_score | ext_score | eligible |
        |           | 701       | True     |
        | 221.3     | 0         | False    |
        |           | 576       | True     |
        | 300       | 600       | True     |

    The leading and trailing pipes are optional, but if one is present,
    so must be the other.

    `kwargs` are passed to `read_csv`. They must not include `sep`.

    In PyCharm, the "Pipe Table Formatter" plugin has a "Format" feature that can 
    be used to neatly format a table.

    Ref: https://stackoverflow.com/a/46471952/
    """

    substitutions = [
        ('^ *', ''),  # Remove leading spaces
        (' *$', ''),  # Remove trailing spaces
        (r' *\| *', '|'),  # Remove spaces between columns
    ]
    if all(line.lstrip().startswith('|') and line.rstrip().endswith('|') for line in str_input.strip().split('\n')):
        substitutions.extend([
            (r'^\|', ''),  # Remove redundant leading delimiter
            (r'\|$', ''),  # Remove redundant trailing delimiter
        ])
    for pattern, replacement in substitutions:
        str_input = re.sub(pattern, replacement, str_input, flags=re.MULTILINE)
    return pd.read_csv(io.StringIO(str_input), sep='|', **kwargs)

非工作的替代品

下面的代码不能正常工作,因为它在左侧和右侧都添加了一个空列。

df = pd.read_csv(io.StringIO(df_str), sep=r'\s*\|\s*', engine='python')

至于read_fwf,它实际上并没有使用那么多read_csv接受和使用的可选kwarg。因此,它根本不应该用于管道分离的数据。

对象:获取字符串make dataframe。

解决方案

def str2frame(estr, sep = ',', lineterm = '\n', set_header = True):
    dat = [x.split(sep) for x in estr.split(lineterm)][1:-1]
    df = pd.DataFrame(dat)
    if set_header:
        df = df.T.set_index(0, drop = True).T # flip, set ix, flip back
    return df

例子

estr = """
sym,date,strike,genus
APPLE,20MAY20,50.0,Malus
ORANGE,22JUL20,50.0,Rutaceae
"""

df = str2frame(estr)

print(df)
0     sym     date strike     genus
1   APPLE  20MAY20   50.0     Malus
2  ORANGE  22JUL20   50.0  Rutaceae

在一行中,但首先导入io

import pandas as pd
import io   

TESTDATA="""col1;col2;col3
1;4.4;99
2;4.5;200
3;4.7;65
4;3.2;140
"""

df = pd.read_csv(io.StringIO(TESTDATA), sep=";")
print(df)