我正在寻找一种从docker容器内使用GPU的方法。
容器将执行任意代码,所以我不想使用特权模式。
任何建议吗?
从以前的研究中,我了解到运行-v和/或LXC cgroup是要走的路,但我不确定如何把它拉下来
我正在寻找一种从docker容器内使用GPU的方法。
容器将执行任意代码,所以我不想使用特权模式。
任何建议吗?
从以前的研究中,我了解到运行-v和/或LXC cgroup是要走的路,但我不确定如何把它拉下来
当前回答
翻译:
https://github.com/mviereck/x11docker硬件加速的说
硬件加速 OpenGL的硬件加速可以通过选项-g,——gpu实现。 在大多数情况下,这将与主机上的开源驱动程序开箱即用。否则,请查看wiki: feature dependencies。 闭源NVIDIA驱动程序需要一些设置,支持较少的x11docker X服务器选项。
这个脚本非常方便,因为它处理了所有的配置和设置。使用gpu在X上运行docker映像非常简单
x11docker --gpu imagename
其他回答
好吧,我终于设法做到没有使用——特权模式。
我在ubuntu服务器14.04上运行,我使用的是最新的cuda (6.0.37 linux 13.04 64位)。
准备
在主机上安装nvidia驱动程序和cuda。(这可能有点棘手,所以我建议你遵循这个指南https://askubuntu.com/questions/451672/installing-and-testing-cuda-in-ubuntu-14-04)
注意:保留用于主机cuda安装的文件是非常重要的
使用lxc让Docker Daemon运行
我们需要使用lxc驱动程序运行docker守护进程,以便能够修改配置并赋予容器对设备的访问权。
一次性利用:
sudo service docker stop
sudo docker -d -e lxc
永久的配置 修改位于/etc/default/docker的docker配置文件 通过添加'-e lxc'更改DOCKER_OPTS行 这是我修改后的线条
DOCKER_OPTS="--dns 8.8.8.8 --dns 8.8.4.4 -e lxc"
然后使用重新启动守护进程
sudo service docker restart
如何检查守护进程是否有效使用lxc驱动程序?
docker info
执行驱动行应该是这样的:
Execution Driver: lxc-1.0.5
使用NVIDIA和CUDA驱动程序构建图像。
下面是一个基本的Dockerfile来构建一个CUDA兼容的映像。
FROM ubuntu:14.04
MAINTAINER Regan <http://stackoverflow.com/questions/25185405/using-gpu-from-a-docker-container>
RUN apt-get update && apt-get install -y build-essential
RUN apt-get --purge remove -y nvidia*
ADD ./Downloads/nvidia_installers /tmp/nvidia > Get the install files you used to install CUDA and the NVIDIA drivers on your host
RUN /tmp/nvidia/NVIDIA-Linux-x86_64-331.62.run -s -N --no-kernel-module > Install the driver.
RUN rm -rf /tmp/selfgz7 > For some reason the driver installer left temp files when used during a docker build (i don't have any explanation why) and the CUDA installer will fail if there still there so we delete them.
RUN /tmp/nvidia/cuda-linux64-rel-6.0.37-18176142.run -noprompt > CUDA driver installer.
RUN /tmp/nvidia/cuda-samples-linux-6.0.37-18176142.run -noprompt -cudaprefix=/usr/local/cuda-6.0 > CUDA samples comment if you don't want them.
RUN export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64 > Add CUDA library into your PATH
RUN touch /etc/ld.so.conf.d/cuda.conf > Update the ld.so.conf.d directory
RUN rm -rf /temp/* > Delete installer files.
运行映像。
首先,您需要确定与您的设备相关联的主号码。 最简单的方法是执行以下命令:
ls -la /dev | grep nvidia
如果结果为空白,则在主机上启动其中一个示例即可。 结果应该是这样的 如您所见,在组和日期之间有一组2个数字。 这两个号码被称为主号码和副号码(按此顺序书写),并设计一个设备。 为了方便起见,我们只使用主号。
为什么要激活lxc驱动? 使用lxc conf选项允许我们的容器访问这些设备。 选项是:(我建议使用*作为次要编号,因为它减少了运行命令的长度)
——lxcc -conf=' lxcc .cgroup.devices.allow = c[主要号码]:[次要号码或*]rwm'
所以如果我想启动一个容器(假设你的图像名称是cuda)。
docker run -ti --lxc-conf='lxc.cgroup.devices.allow = c 195:* rwm' --lxc-conf='lxc.cgroup.devices.allow = c 243:* rwm' cuda
如果可以使用docker,我不建议在主机上安装CUDA/cuDNN。至少从CUDA 8开始,就可以“站在巨人的肩膀上”,并在Docker Hub回购中使用nvidia/ CUDA的基础映像。如果不确定选择哪个版本,就选择最新最大的版本(如果进行深度学习,则使用cuDNN)。
一个启动CUDA容器:
mkdir ~/cuda11
cd ~/cuda11
echo "FROM nvidia/cuda:11.0-cudnn8-devel-ubuntu18.04" > Dockerfile
echo "CMD [\"/bin/bash\"]" >> Dockerfile
docker build --tag mirekphd/cuda11 .
docker run --rm -it --gpus 1 mirekphd/cuda11 nvidia-smi
样例输出:
(如果容器中没有找到NVIDIA -smi,不要尝试在那里安装它-它已经安装在带有NVIDIA GPU驱动程序的主机上,如果docker可以访问GPU,它应该从主机到容器系统可用):
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.57 Driver Version: 450.57 CUDA Version: 11.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 GeForce GTX 108... Off | 00000000:01:00.0 On | N/A |
| 0% 50C P8 17W / 280W | 409MiB / 11177MiB | 7% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
先决条件
首先在主机上安装适当的支持最新CUDA版本的NVIDIA驱动程序(从NVIDIA driver Downloads下载,然后mv driver-file.run driver-file.sh && chmod +x driver-file.sh && ./driver-file.sh)。自CUDA 10.1以来,这些都是向前兼容的。 通过安装sudo apt get update && sudo apt get install nvidia-container-toolkit在docker中启用GPU访问(然后使用sudo systemctl restart docker重新启动docker守护进程)。
在ubuntu 16.04上为cuda-8.0更新
安装docker https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-16-04 构建以下映像,其中包括nvidia驱动程序和cuda工具包
Dockerfile
FROM ubuntu:16.04
MAINTAINER Jonathan Kosgei <jonathan@saharacluster.com>
# A docker container with the Nvidia kernel module and CUDA drivers installed
ENV CUDA_RUN https://developer.nvidia.com/compute/cuda/8.0/prod/local_installers/cuda_8.0.44_linux-run
RUN apt-get update && apt-get install -q -y \
wget \
module-init-tools \
build-essential
RUN cd /opt && \
wget $CUDA_RUN && \
chmod +x cuda_8.0.44_linux-run && \
mkdir nvidia_installers && \
./cuda_8.0.44_linux-run -extract=`pwd`/nvidia_installers && \
cd nvidia_installers && \
./NVIDIA-Linux-x86_64-367.48.run -s -N --no-kernel-module
RUN cd /opt/nvidia_installers && \
./cuda-linux64-rel-8.0.44-21122537.run -noprompt
# Ensure the CUDA libs and binaries are in the correct environment variables
ENV LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64
ENV PATH=$PATH:/usr/local/cuda-8.0/bin
RUN cd /opt/nvidia_installers &&\
./cuda-samples-linux-8.0.44-21122537.run -noprompt -cudaprefix=/usr/local/cuda-8.0 &&\
cd /usr/local/cuda/samples/1_Utilities/deviceQuery &&\
make
WORKDIR /usr/local/cuda/samples/1_Utilities/deviceQuery
运行容器
sudo docker命令-ti——device /dev/ nvidaa0:/dev/ nvidaa0——device /dev/ nvidaactl:/dev/ nvidaactl——device /dev/nvidia-uvm:/dev/nvidia-uvm <built-image> ./deviceQuery . uvm:/dev/nvidia-uvm
你应该看到类似的输出:
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = GRID K520 结果=通过
目标:
我的目标是在不使用nvidia/ CUDA作为基础图像的情况下,制作一个CUDA启用的docker图像。因为我有一些自定义的木星图像,我想以此为基础。
先决条件:
主机上已经安装了nvidia驱动程序、CUDA工具包和nvidia-container-toolkit。请参考官方文件,以及Rohit的回答。
测试nvidia驱动和CUDA工具包是否正确安装:主机上的nvidia-smi,应该显示正确的“driver Version”和“CUDA Version”,并显示gpu信息。
测试nvidia-container-toolkit是否正确安装:docker run——rm——gpu all nvidia/cuda:最新的nvidia-smi
Dockerfile
我找到了我认为是nvidia/cuda的官方Dockerfile,在这里我“压平”它,将内容附加到我的Dockerfile中,并测试它工作得很好:
FROM sidazhou/scipy-notebook:latest
# FROM ubuntu:18.04
###########################################################################
# See https://gitlab.com/nvidia/container-images/cuda/-/blob/master/dist/10.1/ubuntu18.04-x86_64/base/Dockerfile
# See https://sarus.readthedocs.io/en/stable/user/custom-cuda-images.html
###########################################################################
USER root
###########################################################################
# base
RUN apt-get update && apt-get install -y --no-install-recommends \
gnupg2 curl ca-certificates && \
curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub | apt-key add - && \
echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 /" > /etc/apt/sources.list.d/cuda.list && \
echo "deb https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64 /" > /etc/apt/sources.list.d/nvidia-ml.list && \
apt-get purge --autoremove -y curl \
&& rm -rf /var/lib/apt/lists/*
ENV CUDA_VERSION 10.1.243
ENV CUDA_PKG_VERSION 10-1=$CUDA_VERSION-1
# For libraries in the cuda-compat-* package: https://docs.nvidia.com/cuda/eula/index.html#attachment-a
RUN apt-get update && apt-get install -y --no-install-recommends \
cuda-cudart-$CUDA_PKG_VERSION \
cuda-compat-10-1 \
&& ln -s cuda-10.1 /usr/local/cuda && \
rm -rf /var/lib/apt/lists/*
# Required for nvidia-docker v1
RUN echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf && \
echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf
ENV PATH /usr/local/nvidia/bin:/usr/local/cuda/bin:${PATH}
ENV LD_LIBRARY_PATH /usr/local/nvidia/lib:/usr/local/nvidia/lib64
###########################################################################
#runtime next
ENV NCCL_VERSION 2.7.8
RUN apt-get update && apt-get install -y --no-install-recommends \
cuda-libraries-$CUDA_PKG_VERSION \
cuda-npp-$CUDA_PKG_VERSION \
cuda-nvtx-$CUDA_PKG_VERSION \
libcublas10=10.2.1.243-1 \
libnccl2=$NCCL_VERSION-1+cuda10.1 \
&& apt-mark hold libnccl2 \
&& rm -rf /var/lib/apt/lists/*
# apt from auto upgrading the cublas package. See https://gitlab.com/nvidia/container-images/cuda/-/issues/88
RUN apt-mark hold libcublas10
###########################################################################
#cudnn7 (not cudnn8) next
ENV CUDNN_VERSION 7.6.5.32
RUN apt-get update && apt-get install -y --no-install-recommends \
libcudnn7=$CUDNN_VERSION-1+cuda10.1 \
&& apt-mark hold libcudnn7 && \
rm -rf /var/lib/apt/lists/*
ENV NVIDIA_VISIBLE_DEVICES all
ENV NVIDIA_DRIVER_CAPABILITIES all
ENV NVIDIA_REQUIRE_CUDA "cuda>=10.1"
###########################################################################
#docker build -t sidazhou/scipy-notebook-gpu:latest .
#docker run -itd -gpus all\
# -p 8888:8888 \
# -p 6006:6006 \
# --user root \
# -e NB_UID=$(id -u) \
# -e NB_GID=$(id -g) \
# -e GRANT_SUDO=yes \
# -v ~/workspace:/home/jovyan/work \
# --name sidazhou-jupyter-gpu \
# sidazhou/scipy-notebook-gpu:latest
#docker exec sidazhou-jupyter-gpu python -c "import tensorflow as tf; print(tf.config.experimental.list_physical_devices('GPU'))"
NVIDIA最近的改进提供了一种更健壮的方式来实现这一点。
从本质上讲,他们已经找到了一种方法,可以避免在容器内部安装CUDA/GPU驱动程序,并使其与主机内核模块匹配。
相反,驱动程序在主机上,容器不需要它们。 现在需要修改docker-cli。
这很好,因为现在容器更加便携了。
Ubuntu上的一个快速测试:
# Install nvidia-docker and nvidia-docker-plugin
wget -P /tmp https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.1/nvidia-docker_1.0.1-1_amd64.deb
sudo dpkg -i /tmp/nvidia-docker*.deb && rm /tmp/nvidia-docker*.deb
# Test nvidia-smi
nvidia-docker run --rm nvidia/cuda nvidia-smi
详情见: 启用gpu的Docker容器 和:https://github.com/NVIDIA/nvidia-docker