我的CSV数据是这样的:

heading1,heading2,heading3,heading4,heading5
value1_1,value2_1,value3_1,value4_1,value5_1
value1_2,value2_2,value3_2,value4_2,value5_2
...

如何使用JavaScript读取数据并将其转换为这样的数组?:

[
    heading1: value1_1,
    heading2: value2_1,
    heading3: value3_1,
    heading4: value4_1
    heading5: value5_1
],[
    heading1: value1_2,
    heading2: value2_2,
    heading3: value3_2,
    heading4: value4_2,
    heading5: value5_2
]
....

我试过这个代码,但运气不好!:

<script type="text/javascript">
    var allText =[];
    var allTextLines = [];
    var Lines = [];

    var txtFile = new XMLHttpRequest();
    txtFile.open("GET", "file://d:/data.txt", true);
    txtFile.onreadystatechange = function()
    {
        allText = txtFile.responseText;
        allTextLines = allText.split(/\r\n|\n/);
    };

    document.write(allTextLines);
    document.write(allText);
    document.write(txtFile);
</script>

当前回答

下面是一个JavaScript函数,用于解析CSV数据,计算引号内的逗号。

// Parse a CSV row, accounting for commas inside quotes                   
function parse(row){
  var insideQuote = false,                                             
      entries = [],                                                    
      entry = [];
  row.split('').forEach(function (character) {                         
    if(character === '"') {
      insideQuote = !insideQuote;                                      
    } else {
      if(character == "," && !insideQuote) {                           
        entries.push(entry.join(''));                                  
        entry = [];                                                    
      } else {
        entry.push(character);                                         
      }                                                                
    }                                                                  
  });
  entries.push(entry.join(''));                                        
  return entries;                                                      
}

函数解析CSV文件的示例如下:

"foo, the column",bar
2,3
"4, the value",5

数组:

// csv could contain the content read from a csv file
var csv = '"foo, the column",bar\n2,3\n"4, the value",5',

    // Split the input into lines
    lines = csv.split('\n'),

    // Extract column names from the first line
    columnNamesLine = lines[0],
    columnNames = parse(columnNamesLine),

    // Extract data from subsequent lines
    dataLines = lines.slice(1),
    data = dataLines.map(parse);

// Prints ["foo, the column","bar"]
console.log(JSON.stringify(columnNames));

// Prints [["2","3"],["4, the value","5"]]
console.log(JSON.stringify(data));

下面是如何将数据转换为对象,就像D3的csv解析器(这是一个可靠的第三方解决方案):

var dataObjects = data.map(function (arr) {
  var dataObject = {};
  columnNames.forEach(function(columnName, i){
    dataObject[columnName] = arr[i];
  });
  return dataObject;
});

// Prints [{"foo":"2","bar":"3"},{"foo":"4","bar":"5"}]
console.log(JSON.stringify(dataObjects));

这是这段代码的工作原理。

享受吧!——伦

其他回答

根据公认的答案,

我把这里的1改成了0

for (var i=1; i<allTextLines.length; i++) {

更改为

for (var i=0; i<allTextLines.length; i++) {

它将计算一个文件与一个连续的行作为一个allTextLines。长度为1。因此,如果循环从1开始,只要它小于1,它就永远不会运行。因此出现了空白警报框。

这是一个老问题,在2022年,有很多方法可以实现这一目标。首先,我认为D3是数据操作的最佳替代品之一。它是开源的,可以免费使用,但它也是模块化的,所以我们可以只导入fetch模块。

这里有一个基本的例子。我们将使用遗留模式,所以我将导入整个D3库。现在调用d3。csv函数,就完成了。该函数在内部调用fetch方法,因此它可以打开dataURL、url、files、blob等。

const fileInput = document.getElementById('csv') const outElement = document.getElementById('out') const previewCSVData = async dataurl => { const d = await d3.csv(dataurl) console.log({ d }) outElement.textContent = d.columns } const readFile = e => { const file = fileInput.files[0] const reader = new FileReader() reader.onload = () => { const dataUrl = reader.result; previewCSVData(dataUrl) } reader.readAsDataURL(file) } fileInput.onchange = readFile <script type="text/javascript" src="https://unpkg.com/d3@7.6.1/dist/d3.min.js"></script> <div> <p>Select local CSV File:</p> <input id="csv" type="file" accept=".csv"> </div> <pre id="out"><p>File headers will appear here</p></pre>

If we don't want to use any library and we just want to use pain JavaScrip (Vanilla JS) and we managed to get the text content of a file as data and we don't want to use d3 we can implement a simple function that will split the data into a text array then we will extract the first line and split into a headers array and the rest of the text will be the lines we will process. After, we map each line and extract its values and create a row object from an array created from mapping each header to its correspondent value from values[index].

注意:

We also we going to use a little trick array objects in JavaScript can also have attributes. Yes so we will define an attribute rows.headers and assign the headers to it.

const data = `heading_1,heading_2,heading_3,heading_4,heading_5 value_1_1,value_2_1,value_3_1,value_4_1,value_5_1 value_1_2,value_2_2,value_3_2,value_4_2,value_5_2 value_1_3,value_2_3,value_3_3,value_4_3,value_5_3` const csvParser = data => { const text = data.split(/\r\n|\n/) const [first, ...lines] = text const headers = first.split(',') const rows = [] rows.headers = headers lines.map(line => { const values = line.split(',') const row = Object.fromEntries(headers.map((header, i) => [header, values[i]])) rows.push(row) }) return rows } const d = csvParser(data) // Accessing to the theaders attribute const headers = d.headers console.log({headers}) console.log({d})

最后,让我们使用获取和解析csv文件来实现一个普通的JS文件加载器。

const fetchFile = async dataURL => { return await fetch(dataURL).then(response => response.text()) } const csvParser = data => { const text = data.split(/\r\n|\n/) const [first, ...lines] = text const headers = first.split(',') const rows = [] rows.headers = headers lines.map(line => { const values = line.split(',') const row = Object.fromEntries(headers.map((header, i) => [header, values[i]])) rows.push(row) }) return rows } const fileInput = document.getElementById('csv') const outElement = document.getElementById('out') const previewCSVData = async dataURL => { const data = await fetchFile(dataURL) const d = csvParser(data) console.log({ d }) outElement.textContent = d.headers } const readFile = e => { const file = fileInput.files[0] const reader = new FileReader() reader.onload = () => { const dataURL = reader.result; previewCSVData(dataURL) } reader.readAsDataURL(file) } fileInput.onchange = readFile <script type="text/javascript" src="https://unpkg.com/d3@7.6.1/dist/d3.min.js"></script> <div> <p>Select local CSV File:</p> <input id="csv" type="file" accept=".csv"> </div> <pre id="out"><p>File contents will appear here</p></pre>

我用这个文件进行了测试

function CSVParse(csvFile)
{
    this.rows = [];

    var fieldRegEx = new RegExp('(?:\s*"((?:""|[^"])*)"\s*|\s*((?:""|[^",\r\n])*(?:""|[^"\s,\r\n]))?\s*)(,|[\r\n]+|$)', "g");   
    var row = [];
    var currMatch = null;

    while (currMatch = fieldRegEx.exec(this.csvFile))
    {
        row.push([currMatch[1], currMatch[2]].join('')); // concatenate with potential nulls

        if (currMatch[3] != ',')
        {
            this.rows.push(row);
            row = [];
        }

        if (currMatch[3].length == 0)
            break;
    }
}

我喜欢尽可能多地使用正则表达式。此正则表达式将所有项视为带引号或不带引号,后跟列分隔符或行分隔符。或者文本的结尾。

这就是为什么最后一个条件——没有它,它将是一个无限循环,因为模式可以匹配零长度字段(在csv中完全有效)。但由于$是一个零长度断言,它不会进展到不匹配并结束循环。

仅供参考,我必须使第二种选择排除引号周围的值;似乎它在我的javascript引擎上的第一个替代方案之前执行,并考虑将引号作为未加引号的值的一部分。我不会问的,我刚弄好了。

使用csvToObjs函数,您可以将数据条目从CSV格式转换为对象数组。

function csvToObjs(string) { const lines = data.split(/\r\n|\n/); let [headings, ...entries] = lines; headings = headings.split(','); const objs = []; entries.map(entry=>{ obj = entry.split(','); objs.push(Object.fromEntries(headings.map((head, i)=>[head, obj[i]]))); }) return objs; } data = `heading1,heading2,heading3,heading4,heading5 value1_1,value2_1,value3_1,value4_1,value5_1 value1_2,value2_2,value3_2,value4_2,value5_2` console.log(csvToObjs(data));

下面是一个JavaScript函数,用于解析CSV数据,计算引号内的逗号。

// Parse a CSV row, accounting for commas inside quotes                   
function parse(row){
  var insideQuote = false,                                             
      entries = [],                                                    
      entry = [];
  row.split('').forEach(function (character) {                         
    if(character === '"') {
      insideQuote = !insideQuote;                                      
    } else {
      if(character == "," && !insideQuote) {                           
        entries.push(entry.join(''));                                  
        entry = [];                                                    
      } else {
        entry.push(character);                                         
      }                                                                
    }                                                                  
  });
  entries.push(entry.join(''));                                        
  return entries;                                                      
}

函数解析CSV文件的示例如下:

"foo, the column",bar
2,3
"4, the value",5

数组:

// csv could contain the content read from a csv file
var csv = '"foo, the column",bar\n2,3\n"4, the value",5',

    // Split the input into lines
    lines = csv.split('\n'),

    // Extract column names from the first line
    columnNamesLine = lines[0],
    columnNames = parse(columnNamesLine),

    // Extract data from subsequent lines
    dataLines = lines.slice(1),
    data = dataLines.map(parse);

// Prints ["foo, the column","bar"]
console.log(JSON.stringify(columnNames));

// Prints [["2","3"],["4, the value","5"]]
console.log(JSON.stringify(data));

下面是如何将数据转换为对象,就像D3的csv解析器(这是一个可靠的第三方解决方案):

var dataObjects = data.map(function (arr) {
  var dataObject = {};
  columnNames.forEach(function(columnName, i){
    dataObject[columnName] = arr[i];
  });
  return dataObject;
});

// Prints [{"foo":"2","bar":"3"},{"foo":"4","bar":"5"}]
console.log(JSON.stringify(dataObjects));

这是这段代码的工作原理。

享受吧!——伦