我想定义一个没有初始化长度的二维数组,如下所示:
Matrix = [][]
但这给出了一个错误:
IndexError:列表索引超出范围
我想定义一个没有初始化长度的二维数组,如下所示:
Matrix = [][]
但这给出了一个错误:
IndexError:列表索引超出范围
当前回答
如果你只需要一个二维容器来容纳一些元素,你可以方便地使用字典来代替:
Matrix = {}
然后您可以执行以下操作:
Matrix[1,2] = 15
print Matrix[1,2]
这是因为1,2是一个元组,您将其用作索引字典的键。结果类似于哑稀疏矩阵。
如osa和Josap Valls所示,您还可以使用Matrix=collections.defaultdict(lambda:0),以便丢失的元素具有默认值0。
Vatsal进一步指出,这种方法对于大型矩阵可能不是很有效,只应在代码的非性能关键部分使用。
其他回答
这就是词典的用途!
matrix = {}
可以通过两种方式定义键和值:
matrix[0,0] = value
or
matrix = { (0,0) : value }
结果:
[ value, value, value, value, value],
[ value, value, value, value, value],
...
如果你真的想要一个矩阵,你最好使用numpy。numpy中的矩阵运算通常使用二维数组类型。创建新阵列有多种方法;其中最有用的是zeros函数,它接受一个形状参数并返回一个给定形状的数组,值初始化为零:
>>> import numpy
>>> numpy.zeros((5, 5))
array([[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.]])
以下是创建二维数组和矩阵的一些其他方法(为了紧凑,去掉了输出):
numpy.arange(25).reshape((5, 5)) # create a 1-d range and reshape
numpy.array(range(25)).reshape((5, 5)) # pass a Python range and reshape
numpy.array([5] * 25).reshape((5, 5)) # pass a Python list and reshape
numpy.empty((5, 5)) # allocate, but don't initialize
numpy.ones((5, 5)) # initialize with ones
numpy也提供了一种矩阵类型,但它不再推荐用于任何用途,将来可能会从numpy中删除。
为便于阅读而重写:
# 2D array/ matrix
# 5 rows, 5 cols
rows_count = 5
cols_count = 5
# create
# creation looks reverse
# create an array of "cols_count" cols, for each of the "rows_count" rows
# all elements are initialized to 0
two_d_array = [[0 for j in range(cols_count)] for i in range(rows_count)]
# index is from 0 to 4
# for both rows & cols
# since 5 rows, 5 cols
# use
two_d_array[0][0] = 1
print two_d_array[0][0] # prints 1 # 1st row, 1st col (top-left element of matrix)
two_d_array[1][0] = 2
print two_d_array[1][0] # prints 2 # 2nd row, 1st col
two_d_array[1][4] = 3
print two_d_array[1][4] # prints 3 # 2nd row, last col
two_d_array[4][4] = 4
print two_d_array[4][4] # prints 4 # last row, last col (right, bottom element of matrix)
如果要创建空矩阵,正确的语法是
matrix = [[]]
如果你想生成一个大小为5、填充有0的矩阵,
matrix = [[0 for i in xrange(5)] for i in xrange(5)]
如果您希望能够将其视为2D阵列,而不是被迫根据列表进行思考(在我看来更自然),可以执行以下操作:
import numpy
Nx=3; Ny=4
my2Dlist= numpy.zeros((Nx,Ny)).tolist()
结果是一个列表(不是NumPy数组),您可以用数字、字符串等覆盖各个位置。