就OOP程序员所能理解的(没有任何功能编程背景)而言,什么是monad?

它解决了什么问题,最常用的地方是什么?

使现代化

为了澄清我所寻求的理解,假设您正在将一个具有monad的FP应用程序转换为OOP应用程序。如何将monad的职责移植到OOP应用程序?


当前回答

monad在OO中是否具有“自然”解释取决于monad。在像Java这样的语言中,您可以将may monad转换为检查空指针的语言,这样失败的计算(即,在Haskell中生成Nothing)会将空指针作为结果发出。您可以将状态monad转换为通过创建可变变量和更改其状态的方法生成的语言。

monad是内函子范畴中的幺半群。

这句话所表达的信息非常深刻。你在一个monad中使用任何命令式语言。monad是一种“有序”的领域特定语言。它满足某些有趣的财产,这些属性使单子函数成为“命令式编程”的数学模型。Haskell使定义小型(或大型)命令式语言变得容易,这些语言可以以多种方式组合。

作为一名OO程序员,您使用语言的类层次结构来组织可以在上下文中调用的函数或过程的类型,即您所称的对象。monad也是对这个概念的抽象,因为不同的monad可以以任意方式组合,有效地将所有子monad的方法“导入”到范围中。

从体系结构上讲,然后使用类型签名来明确表示可以使用哪些上下文来计算值。

可以使用monad转换器来实现这一目的,并且有一个高质量的所有“标准”monad集合:

列表(通过将列表视为域进行非确定性计算)可能(计算可能失败,但报告不重要)错误(可能失败并需要异常处理的计算Reader(可以由普通Haskell函数组合表示的计算)编写器(使用顺序“渲染”/“记录”(到字符串、html等)进行计算)续(续)IO(取决于底层计算机系统的计算)状态(上下文包含可修改值的计算)

具有相应的monad变压器和类型类别。类型类允许通过统一monad的接口来组合monad,从而使具体monad可以实现monad“类”的标准接口。例如,模块Control.Monad.State包含一个类MonadState s m,(State s)是表单的一个实例

instance MonadState s (State s) where
    put = ...
    get = ...

长话短说,monad是一个函子,它将“上下文”附加到一个值上,它可以向monad中注入一个值,并且可以根据附加到它上的上下文来评估值,至少是以受限的方式。

So:

return :: a -> m a

是一个函数,它将a类型的值注入到m类型的monad“action”中。

(>>=) :: m a -> (a -> m b) -> m b

是一个执行monad操作、评估其结果并将函数应用于结果的函数。(>>=)的妙处在于结果在同一个monad中。换句话说,在m>>=f中,(>>=)从m中提取结果,并将其绑定到f,这样结果就在monad中。(或者,我们可以说(>>=)将f拉入m,并将其应用于结果。)因此,如果我们有f::a->m b和g::b->m c,我们可以“排序”动作:

m >>= f >>= g

或者,使用“do符号”

do x <- m
   y <- f x
   g y

(>>)的类型可能是发光的。它是

(>>) :: m a -> m b -> m b

它对应于C等过程语言中的(;)运算符。它允许使用以下表示法:

m = do x <- someQuery
       someAction x
       theNextAction
       andSoOn

在数学和哲学逻辑中,我们有框架和模型,这些框架和模型“自然”地用单子主义建模。解释是一种函数,它查看模型的域,并计算命题(或公式,在推广下)的真值(或推广)。在必要性的模态逻辑中,我们可能会说,如果命题在“每个可能的世界”中都是真的,那么它是必要的——如果它在每个可容许的域中都是真实的。这意味着命题语言中的模型可以具体化为一个模型,其域由不同模型的集合组成(一个对应于每个可能的世界)。每个monad都有一个名为“join”的方法,该方法将分层,这意味着结果为monad动作的每个monad动作都可以嵌入到monad中。

join :: m (m a) -> m a

更重要的是,这意味着monad在“层堆叠”操作下关闭。这就是monad转换器的工作原理:它们通过为以下类型提供“类联接”方法来组合monad:

newtype MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }

这样我们就可以将(MaybeT m)中的作用转换为m中的作用,有效地折叠层。在本例中,runMaybeT::MaybeT m a->m(Maybe a)是我们的类联接方法。(MaybeT m)是一个monad,MaybeT::m(Maybe a)->MaybeT ma实际上是m中一个新类型monad动作的构造函数。

函子的自由单元是通过堆叠f生成的单元,这意味着f的每个构造函数序列都是自由单元的元素(或者更确切地说,是与f的构造函数序列树形状相同的元素)。自由单体是一种用最少的锅炉板构建柔性单体的有用技术。在Haskell程序中,我可能会使用自由monad来为“高级系统编程”定义简单monad,以帮助维护类型安全(我只是在使用类型及其声明。使用组合子可以直接实现):

data RandomF r a = GetRandom (r -> a) deriving Functor
type Random r a = Free (RandomF r) a


type RandomT m a = Random (m a) (m a) -- model randomness in a monad by computing random monad elements.
getRandom     :: Random r r
runRandomIO   :: Random r a -> IO a (use some kind of IO-based backend to run)
runRandomIO'  :: Random r a -> IO a (use some other kind of IO-based backend)
runRandomList :: Random r a -> [a]  (some kind of list-based backend (for pseudo-randoms))

Monastem是您可能称之为“解释器”或“命令”模式的基础架构,抽象为最清晰的形式,因为每个单元计算都必须“运行”,至少是微不足道的。(运行时系统为我们运行IO monad,是任何Haskell程序的入口点。IO通过按顺序运行IO操作来“驱动”其余的计算)。

join的类型也是我们得到monad是内函子范畴中的幺半群的陈述的地方。由于其类型,联接对于理论目的来说通常更为重要。但了解类型意味着了解单子。Join和monad变换器的类Join类型在函数组合的意义上是内函子的有效组合。把它放在类似Haskell的伪语言中,

Foo::m(m a)<->(m.m)a

其他回答

monad在OO中是否具有“自然”解释取决于monad。在像Java这样的语言中,您可以将may monad转换为检查空指针的语言,这样失败的计算(即,在Haskell中生成Nothing)会将空指针作为结果发出。您可以将状态monad转换为通过创建可变变量和更改其状态的方法生成的语言。

monad是内函子范畴中的幺半群。

这句话所表达的信息非常深刻。你在一个monad中使用任何命令式语言。monad是一种“有序”的领域特定语言。它满足某些有趣的财产,这些属性使单子函数成为“命令式编程”的数学模型。Haskell使定义小型(或大型)命令式语言变得容易,这些语言可以以多种方式组合。

作为一名OO程序员,您使用语言的类层次结构来组织可以在上下文中调用的函数或过程的类型,即您所称的对象。monad也是对这个概念的抽象,因为不同的monad可以以任意方式组合,有效地将所有子monad的方法“导入”到范围中。

从体系结构上讲,然后使用类型签名来明确表示可以使用哪些上下文来计算值。

可以使用monad转换器来实现这一目的,并且有一个高质量的所有“标准”monad集合:

列表(通过将列表视为域进行非确定性计算)可能(计算可能失败,但报告不重要)错误(可能失败并需要异常处理的计算Reader(可以由普通Haskell函数组合表示的计算)编写器(使用顺序“渲染”/“记录”(到字符串、html等)进行计算)续(续)IO(取决于底层计算机系统的计算)状态(上下文包含可修改值的计算)

具有相应的monad变压器和类型类别。类型类允许通过统一monad的接口来组合monad,从而使具体monad可以实现monad“类”的标准接口。例如,模块Control.Monad.State包含一个类MonadState s m,(State s)是表单的一个实例

instance MonadState s (State s) where
    put = ...
    get = ...

长话短说,monad是一个函子,它将“上下文”附加到一个值上,它可以向monad中注入一个值,并且可以根据附加到它上的上下文来评估值,至少是以受限的方式。

So:

return :: a -> m a

是一个函数,它将a类型的值注入到m类型的monad“action”中。

(>>=) :: m a -> (a -> m b) -> m b

是一个执行monad操作、评估其结果并将函数应用于结果的函数。(>>=)的妙处在于结果在同一个monad中。换句话说,在m>>=f中,(>>=)从m中提取结果,并将其绑定到f,这样结果就在monad中。(或者,我们可以说(>>=)将f拉入m,并将其应用于结果。)因此,如果我们有f::a->m b和g::b->m c,我们可以“排序”动作:

m >>= f >>= g

或者,使用“do符号”

do x <- m
   y <- f x
   g y

(>>)的类型可能是发光的。它是

(>>) :: m a -> m b -> m b

它对应于C等过程语言中的(;)运算符。它允许使用以下表示法:

m = do x <- someQuery
       someAction x
       theNextAction
       andSoOn

在数学和哲学逻辑中,我们有框架和模型,这些框架和模型“自然”地用单子主义建模。解释是一种函数,它查看模型的域,并计算命题(或公式,在推广下)的真值(或推广)。在必要性的模态逻辑中,我们可能会说,如果命题在“每个可能的世界”中都是真的,那么它是必要的——如果它在每个可容许的域中都是真实的。这意味着命题语言中的模型可以具体化为一个模型,其域由不同模型的集合组成(一个对应于每个可能的世界)。每个monad都有一个名为“join”的方法,该方法将分层,这意味着结果为monad动作的每个monad动作都可以嵌入到monad中。

join :: m (m a) -> m a

更重要的是,这意味着monad在“层堆叠”操作下关闭。这就是monad转换器的工作原理:它们通过为以下类型提供“类联接”方法来组合monad:

newtype MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }

这样我们就可以将(MaybeT m)中的作用转换为m中的作用,有效地折叠层。在本例中,runMaybeT::MaybeT m a->m(Maybe a)是我们的类联接方法。(MaybeT m)是一个monad,MaybeT::m(Maybe a)->MaybeT ma实际上是m中一个新类型monad动作的构造函数。

函子的自由单元是通过堆叠f生成的单元,这意味着f的每个构造函数序列都是自由单元的元素(或者更确切地说,是与f的构造函数序列树形状相同的元素)。自由单体是一种用最少的锅炉板构建柔性单体的有用技术。在Haskell程序中,我可能会使用自由monad来为“高级系统编程”定义简单monad,以帮助维护类型安全(我只是在使用类型及其声明。使用组合子可以直接实现):

data RandomF r a = GetRandom (r -> a) deriving Functor
type Random r a = Free (RandomF r) a


type RandomT m a = Random (m a) (m a) -- model randomness in a monad by computing random monad elements.
getRandom     :: Random r r
runRandomIO   :: Random r a -> IO a (use some kind of IO-based backend to run)
runRandomIO'  :: Random r a -> IO a (use some other kind of IO-based backend)
runRandomList :: Random r a -> [a]  (some kind of list-based backend (for pseudo-randoms))

Monastem是您可能称之为“解释器”或“命令”模式的基础架构,抽象为最清晰的形式,因为每个单元计算都必须“运行”,至少是微不足道的。(运行时系统为我们运行IO monad,是任何Haskell程序的入口点。IO通过按顺序运行IO操作来“驱动”其余的计算)。

join的类型也是我们得到monad是内函子范畴中的幺半群的陈述的地方。由于其类型,联接对于理论目的来说通常更为重要。但了解类型意味着了解单子。Join和monad变换器的类Join类型在函数组合的意义上是内函子的有效组合。把它放在类似Haskell的伪语言中,

Foo::m(m a)<->(m.m)a

如果您曾经使用过Powershell,Eric描述的模式听起来应该很熟悉。Powershell cmdlet是monad;功能组成由管道表示。

杰弗里·斯诺弗对埃里克·梅杰的采访更为详细。

我分享了我对蒙纳斯的理解,这在理论上可能并不完美。Monad是关于上下文传播的。Monad就是,您为某些数据(或数据类型)定义一些上下文,然后定义该上下文将如何在整个处理管道中与数据一起传递。定义上下文传播主要是定义如何合并多个上下文(相同类型)。使用Monads还意味着确保这些上下文不会意外地从数据中剥离。另一方面,可以将其他无上下文数据带入新的或现有的上下文中。然后,可以使用这个简单的概念来确保程序的编译时正确性。

更新:这个问题是一个非常长的博客系列的主题,你可以在Monads上阅读-谢谢你提出的问题!

就OOP程序员所能理解的(没有任何功能编程背景)而言,什么是monad?

monad是一种类型的“放大器”,它遵守某些规则,并提供某些操作。

首先,什么是“类型放大器”?我指的是某种系统,它可以让你选择一种类型,并将其转换为更特殊的类型。例如,在C#中,考虑Nullable<T>。这是一种类型的放大器。它允许您接受一个类型,比如int,并为该类型添加一个新的功能,即现在它可以在以前不能为null时为null。

作为第二个例子,考虑IEnumerable<T>。这是一种类型的放大器。它允许您获取一个类型,例如字符串,并为该类型添加一个新功能,即您现在可以从任意数量的单个字符串中创建一个字符串序列。

什么是“特定规则”?简言之,对于基础类型上的函数来说,有一种合理的方法来处理放大的类型,从而使它们遵循函数组合的正常规则。例如,如果你有一个关于整数的函数,比如

int M(int x) { return x + N(x * 2); }

则Nullable<int>上的相应函数可以使其中的所有运算符和调用“以与之前相同的方式”一起工作。

(这是难以置信的模糊和不精确;你要求的解释没有假设任何关于功能成分的知识。)

什么是“操作”?

有一个“单元”操作(有时被混淆地称为“返回”操作),它从普通类型中获取值并创建等效的一元值。本质上,这提供了一种获取未放大类型值并将其转换为放大类型值的方法。它可以作为OO语言中的构造函数实现。有一个“绑定”操作,它接受一个一元值和一个可以转换该值的函数,并返回一个新的一元值。Bind是定义monad语义的关键操作。它允许我们将未放大类型上的操作转换为放大类型的操作,这符合前面提到的函数组合规则。通常有一种方法可以使未放大的类型从放大的类型中恢复出来。严格来说,这个操作不需要有monad。(虽然如果你想有一个伴侣,这是必要的。我们不会在本文中进一步考虑这些。)

同样,以Nullable<T>为例。可以使用构造函数将int转换为Nullable<int>。C#编译器为您处理大多数可为空的“提升”,但如果没有,提升转换很简单:,

int M(int x) { whatever }

转化为

Nullable<int> M(Nullable<int> x) 
{ 
    if (x == null) 
        return null; 
    else 
        return new Nullable<int>(whatever);
}

通过Value属性可以将Nullable<int>转换回int。

关键是函数转换。请注意,在转换中如何捕获可为null的操作的实际语义(即对null的操作传播null)。我们可以概括这一点。

假设你有一个从int到int的函数,就像我们最初的M一样。你可以很容易地将它转换成一个接受int并返回Nullable<int>的函数,因为你可以通过可空构造函数来运行结果。现在假设你有一个更高阶的方法:

static Nullable<T> Bind<T>(Nullable<T> amplified, Func<T, Nullable<T>> func)
{
    if (amplified == null) 
        return null;
    else
        return func(amplified.Value);
}

看看你能用它做什么?任何接受一个int并返回一个int,或者接受一个整型并返回一一个Nullable<int>的方法现在都可以应用可空语义。

此外:假设您有两种方法

Nullable<int> X(int q) { ... }
Nullable<int> Y(int r) { ... }

并且您希望编写它们:

Nullable<int> Z(int s) { return X(Y(s)); }

也就是说,Z是X和Y的合成,但不能这样做,因为X取一个int,Y返回一个Nullable<int>。但是,由于您有“绑定”操作,因此您可以执行以下操作:

Nullable<int> Z(int s) { return Bind(Y(s), X); }

monad上的绑定操作使放大类型上的函数组合工作。我在上面写的“规则”是,monad保留了正常函数组合的规则;使用同一函数的合成产生原始函数,合成是关联的,等等。

在C#中,“Bind”被称为“SelectMany”。看看它是如何在序列monad上工作的。我们需要做两件事:将一个值转换为一个序列,并在序列上绑定操作。作为奖励,我们还可以“将序列转换回值”。这些操作包括:

static IEnumerable<T> MakeSequence<T>(T item)
{
    yield return item;
}
// Extract a value
static T First<T>(IEnumerable<T> sequence)
{
    // let's just take the first one
    foreach(T item in sequence) return item; 
    throw new Exception("No first item");
}
// "Bind" is called "SelectMany"
static IEnumerable<T> SelectMany<T>(IEnumerable<T> seq, Func<T, IEnumerable<T>> func)
{
    foreach(T item in seq)
        foreach(T result in func(item))
            yield return result;            
}

可为null的monad规则是“将产生可为null值的两个函数组合在一起,检查内部函数是否产生null值;如果产生null值,则产生null值。如果没有,则调用外部函数产生null值”。这就是nullable的理想语义。

序列monad规则是“将两个生成序列的函数组合在一起,将外部函数应用于内部函数生成的每个元素,然后将所有生成的序列连接在一起”。monad的基本语义在Bind/SelectMany方法中被捕获;这是告诉monad真正含义的方法。

我们可以做得更好。假设您有一个int序列,以及一个接受int并生成字符串序列的方法。我们可以推广绑定操作,以允许组合接受和返回不同放大类型的函数,只要其中一个的输入与另一个的输出匹配:

static IEnumerable<U> SelectMany<T,U>(IEnumerable<T> seq, Func<T, IEnumerable<U>> func)
{
    foreach(T item in seq)
        foreach(U result in func(item))
            yield return result;            
}

现在我们可以说“将这一组单独的整数放大成一系列整数。将这一特定的整数转换成一系列字符串,放大成一组字符串。现在将这两个操作放在一起:将这一系列整数放大成所有字符串序列的串联。”单子允许您合成放大。

它解决了什么问题,最常用的地方是什么?

这相当于问“单例模式解决了什么问题?”,但我会尝试一下。

Monad通常用于解决以下问题:

我需要为这种类型创建新的功能,并且仍然在这种类型上组合旧的功能以使用新的功能。我需要在类型上捕获一堆操作,并将这些操作表示为可组合对象,构建越来越大的组合,直到表示出正确的一系列操作,然后我需要开始获得结果我需要用讨厌副作用的语言清晰地表示副作用操作

C#在设计中使用monad。如前所述,可空模式与“可能是monad”非常相似。LINQ完全由monad构建;SelectMany方法是操作组合的语义工作。(Erik Meijer喜欢指出,每个LINQ函数实际上都可以由SelectMany实现;其他一切都只是为了方便。)

为了澄清我所寻求的理解,假设您正在将一个具有monad的FP应用程序转换为OOP应用程序。如何将monad的职责移植到OOP应用程序中?

大多数OOP语言没有足够丰富的类型系统来直接表示monad模式本身;您需要一个支持高于泛型类型的类型的类型系统。所以我不会这么做。相反,我将实现表示每个monad的泛型类型,并实现表示您需要的三个操作的方法:将值转换为放大值,(可能)将放大值转换为值,以及将未放大值上的函数转换为放大的值上的函数。

一个好的开始是我们如何在C#中实现LINQ。研究SelectMany方法;这是理解序列monad如何在C#中工作的关键。这是一个非常简单的方法,但非常强大!


建议进一步阅读:

为了对C#中的单子进行更深入、理论上更合理的解释,我强烈推荐我(埃里克·里佩尔)的同事韦斯·戴尔(Wes Dyer)关于这个主题的文章。这篇文章是当他们最终为我“点击”时向我解释单子的原因。蒙得斯的奇迹这是一个很好的例子,说明了为什么您可能需要一个monad(在示例中使用Haskell)。你本可以发明修道院的!(也许你已经有了。)丹·皮波尼有点像,将上一篇文章“翻译”为JavaScript。詹姆斯·科格兰(James Coglan)所读过的monads最佳简介精选部分从Haskell翻译成JavaScript


你最近有一篇演讲《Monadologie——关于类型焦虑的专业帮助》(Christopher League,2010年7月12日),这篇演讲对延续和monad的话题非常有趣。这个(幻灯片)演示的视频实际上可以在vimeo上获得。Monad部分开始于37分钟左右,在这段一小时的视频中,从58张幻灯片中的第42张幻灯片开始。

它被称为“函数式编程的主要设计模式”,但示例中使用的语言是Scala,它既是面向对象的又是函数式的。您可以在Debasish Ghosh(2008年3月27日)的博客文章“Monads-在Scala中抽象计算的另一种方法”中阅读更多关于Monad的内容。

如果类型构造函数M支持以下操作,那么它就是monad:

# the return function
def unit[A] (x: A): M[A]

# called "bind" in Haskell 
def flatMap[A,B] (m: M[A]) (f: A => M[B]): M[B]

# Other two can be written in term of the first two:

def map[A,B] (m: M[A]) (f: A => B): M[B] =
  flatMap(m){ x => unit(f(x)) }

def andThen[A,B] (ma: M[A]) (mb: M[B]): M[B] =
  flatMap(ma){ x => mb }

例如(在Scala中):

选项是monad

    def unit[A] (x: A): Option[A] = Some(x)

    def flatMap[A,B](m:Option[A])(f:A =>Option[B]): Option[B] =
      m match {
       case None => None
       case Some(x) => f(x)
      }

列表为Monad

    def unit[A] (x: A): List[A] = List(x)

    def flatMap[A,B](m:List[A])(f:A =>List[B]): List[B] =
      m match {
        case Nil => Nil
        case x::xs => f(x) ::: flatMap(xs)(f)
      }

Monad在Scala中非常重要,因为它是为了利用Monad结构而构建的方便语法:

对于Scala的理解:

for {
  i <- 1 to 4
  j <- 1 to i
  k <- 1 to j
} yield i*j*k

由编译器翻译为:

(1 to 4).flatMap { i =>
  (1 to i).flatMap { j =>
    (1 to j).map { k =>
      i*j*k }}}

关键抽象是flatMap,它通过链接绑定计算。flatMap的每次调用都返回相同的数据结构类型(但值不同),作为链中下一个命令的输入。

在上面的代码段中,flatMap将闭包(SomeType)=>List[AanotherType]作为输入,并返回List[Aanother Type]。需要注意的一点是,所有flatMap都采用相同的闭包类型作为输入,并返回与输出相同的类型。

这就是“绑定”计算线程的原因——为了理解,序列中的每一项都必须遵守相同的类型约束。


如果您执行两个操作(可能失败)并将结果传递给第三个,例如:

lookupVenue: String => Option[Venue]
getLoggedInUser: SessionID => Option[User]
reserveTable: (Venue, User) => Option[ConfNo]

但如果不利用Monad,你会得到复杂的OOP代码,比如:

val user = getLoggedInUser(session)
val confirm =
  if(!user.isDefined) None
  else lookupVenue(name) match {
    case None => None
    case Some(venue) =>
      val confno = reserveTable(venue, user.get)
      if(confno.isDefined)
        mailTo(confno.get, user.get)
      confno
  }

而使用Monad,您可以像所有操作一样使用实际类型(地点、用户),并隐藏选项验证内容,这都是因为for语法的平面图:

val confirm = for {
  venue <- lookupVenue(name)
  user <- getLoggedInUser(session)
  confno <- reserveTable(venue, user)
} yield {
  mailTo(confno, user)
  confno
}

只有当所有三个函数都具有Some[X]时,才会执行屈服部分;任何“无”将直接返回以确认。


So:

Monad允许在函数编程中进行有序计算,这允许我们以一种很好的结构化形式(有点像DSL)对动作序列进行建模。最大的能力来自于将服务于不同目的的monad组合成应用程序中的可扩展抽象的能力。monad对动作的排序和线程化由语言编译器完成,该语言编译器通过闭包的魔力进行转换。


顺便说一句,Monad不是FP中使用的唯一计算模型:

范畴理论提出了许多计算模型。其中计算的Arrow模型莫纳德计算模型计算的应用模型