我是一个老派的MySQL用户,总是更喜欢JOIN而不是子查询。但是现在每个人都用子查询,我讨厌它;我不知道为什么。
我缺乏理论知识来判断是否有任何不同。子查询是否与JOIN一样好,因此没有什么可担心的?
我是一个老派的MySQL用户,总是更喜欢JOIN而不是子查询。但是现在每个人都用子查询,我讨厌它;我不知道为什么。
我缺乏理论知识来判断是否有任何不同。子查询是否与JOIN一样好,因此没有什么可担心的?
当前回答
A general rule is that joins are faster in most cases (99%). The more data tables have, the subqueries are slower. The less data tables have, the subqueries have equivalent speed as joins. The subqueries are simpler, easier to understand, and easier to read. Most of the web and app frameworks and their "ORM"s and "Active record"s generate queries with subqueries, because with subqueries are easier to split responsibility, maintain code, etc. For smaller web sites or apps subqueries are OK, but for larger web sites and apps you will often have to rewrite generated queries to join queries, especial if a query uses many subqueries in the query.
有人说“一些RDBMS可以将子查询重写为连接,或将连接重写为子查询,当它认为其中一个比另一个快时”,但这句话适用于简单的情况,当然不适用于带有子查询的复杂查询,这实际上会导致性能问题。
其他回答
MySQL版本:5.5.28-0ubuntu0.12.04.2-log
在我的印象中,JOIN总是比MySQL中的子查询更好,但EXPLAIN是更好的判断方式。下面是一个子查询比join更好的例子。
这是我的查询与3个子查询:
EXPLAIN SELECT vrl.list_id,vrl.ontology_id,vrl.position,l.name AS list_name, vrlih.position AS previous_position, vrl.moved_date
FROM `vote-ranked-listory` vrl
INNER JOIN lists l ON l.list_id = vrl.list_id
INNER JOIN `vote-ranked-list-item-history` vrlih ON vrl.list_id = vrlih.list_id AND vrl.ontology_id=vrlih.ontology_id AND vrlih.type='PREVIOUS_POSITION'
INNER JOIN list_burial_state lbs ON lbs.list_id = vrl.list_id AND lbs.burial_score < 0.5
WHERE vrl.position <= 15 AND l.status='ACTIVE' AND l.is_public=1 AND vrl.ontology_id < 1000000000
AND (SELECT list_id FROM list_tag WHERE list_id=l.list_id AND tag_id=43) IS NULL
AND (SELECT list_id FROM list_tag WHERE list_id=l.list_id AND tag_id=55) IS NULL
AND (SELECT list_id FROM list_tag WHERE list_id=l.list_id AND tag_id=246403) IS NOT NULL
ORDER BY vrl.moved_date DESC LIMIT 200;
解释说明:
+----+--------------------+----------+--------+-----------------------------------------------------+--------------+---------+-------------------------------------------------+------+--------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------------+----------+--------+-----------------------------------------------------+--------------+---------+-------------------------------------------------+------+--------------------------+
| 1 | PRIMARY | vrl | index | PRIMARY | moved_date | 8 | NULL | 200 | Using where |
| 1 | PRIMARY | l | eq_ref | PRIMARY,status,ispublic,idx_lookup,is_public_status | PRIMARY | 4 | ranker.vrl.list_id | 1 | Using where |
| 1 | PRIMARY | vrlih | eq_ref | PRIMARY | PRIMARY | 9 | ranker.vrl.list_id,ranker.vrl.ontology_id,const | 1 | Using where |
| 1 | PRIMARY | lbs | eq_ref | PRIMARY,idx_list_burial_state,burial_score | PRIMARY | 4 | ranker.vrl.list_id | 1 | Using where |
| 4 | DEPENDENT SUBQUERY | list_tag | ref | list_tag_key,list_id,tag_id | list_tag_key | 9 | ranker.l.list_id,const | 1 | Using where; Using index |
| 3 | DEPENDENT SUBQUERY | list_tag | ref | list_tag_key,list_id,tag_id | list_tag_key | 9 | ranker.l.list_id,const | 1 | Using where; Using index |
| 2 | DEPENDENT SUBQUERY | list_tag | ref | list_tag_key,list_id,tag_id | list_tag_key | 9 | ranker.l.list_id,const | 1 | Using where; Using index |
+----+--------------------+----------+--------+-----------------------------------------------------+--------------+---------+-------------------------------------------------+------+--------------------------+
使用join的相同查询是:
EXPLAIN SELECT vrl.list_id,vrl.ontology_id,vrl.position,l.name AS list_name, vrlih.position AS previous_position, vrl.moved_date
FROM `vote-ranked-listory` vrl
INNER JOIN lists l ON l.list_id = vrl.list_id
INNER JOIN `vote-ranked-list-item-history` vrlih ON vrl.list_id = vrlih.list_id AND vrl.ontology_id=vrlih.ontology_id AND vrlih.type='PREVIOUS_POSITION'
INNER JOIN list_burial_state lbs ON lbs.list_id = vrl.list_id AND lbs.burial_score < 0.5
LEFT JOIN list_tag lt1 ON lt1.list_id = vrl.list_id AND lt1.tag_id = 43
LEFT JOIN list_tag lt2 ON lt2.list_id = vrl.list_id AND lt2.tag_id = 55
INNER JOIN list_tag lt3 ON lt3.list_id = vrl.list_id AND lt3.tag_id = 246403
WHERE vrl.position <= 15 AND l.status='ACTIVE' AND l.is_public=1 AND vrl.ontology_id < 1000000000
AND lt1.list_id IS NULL AND lt2.tag_id IS NULL
ORDER BY vrl.moved_date DESC LIMIT 200;
输出为:
+----+-------------+-------+--------+-----------------------------------------------------+--------------+---------+---------------------------------------------+------+----------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+--------+-----------------------------------------------------+--------------+---------+---------------------------------------------+------+----------------------------------------------+
| 1 | SIMPLE | lt3 | ref | list_tag_key,list_id,tag_id | tag_id | 5 | const | 2386 | Using where; Using temporary; Using filesort |
| 1 | SIMPLE | l | eq_ref | PRIMARY,status,ispublic,idx_lookup,is_public_status | PRIMARY | 4 | ranker.lt3.list_id | 1 | Using where |
| 1 | SIMPLE | vrlih | ref | PRIMARY | PRIMARY | 4 | ranker.lt3.list_id | 103 | Using where |
| 1 | SIMPLE | vrl | ref | PRIMARY | PRIMARY | 8 | ranker.lt3.list_id,ranker.vrlih.ontology_id | 65 | Using where |
| 1 | SIMPLE | lt1 | ref | list_tag_key,list_id,tag_id | list_tag_key | 9 | ranker.lt3.list_id,const | 1 | Using where; Using index; Not exists |
| 1 | SIMPLE | lbs | eq_ref | PRIMARY,idx_list_burial_state,burial_score | PRIMARY | 4 | ranker.vrl.list_id | 1 | Using where |
| 1 | SIMPLE | lt2 | ref | list_tag_key,list_id,tag_id | list_tag_key | 9 | ranker.lt3.list_id,const | 1 | Using where; Using index |
+----+-------------+-------+--------+-----------------------------------------------------+--------------+---------+---------------------------------------------+------+----------------------------------------------+
rows列的比较表明了差异,使用join的查询使用的是using temporary;使用filesort。
当然,当我运行这两个查询时,第一个查询在0.02秒内完成,第二个查询甚至在1分钟后都没有完成,所以EXPLAIN正确地解释了这些查询。
如果我在list_tag表上没有INNER JOIN,即如果我删除
AND (SELECT list_id FROM list_tag WHERE list_id=l.list_id AND tag_id=246403) IS NOT NULL
从第一个查询和相应的:
INNER JOIN list_tag lt3 ON lt3.list_id = vrl.list_id AND lt3.tag_id = 246403
从第二个查询开始,那么EXPLAIN为两个查询返回相同的行数,并且这两个查询的运行速度相同。
摘自MySQL手册(13.2.10.11将子查询重写为连接):
LEFT [OUTER] JOIN可以比等效的子查询更快,因为服务器可以更好地优化它——这不是MySQL服务器独有的事实。
所以子查询可能比LEFT [OUTER] JOIN慢,但在我看来,它们的优势是可读性略高。
首先,为了比较这两个,首先你应该区分查询和子查询:
一个子查询类,它总是使用连接编写相应的等效查询 不能使用连接重写的子查询类
对于第一类查询,一个好的RDBMS将把联接查询和子查询视为等效的,并将产生相同的查询计划。
现在甚至mysql也这么做了。
尽管如此,有时它并不会,但这并不意味着连接总是会赢-我有在mysql中使用子查询提高性能的情况。(例如,如果有一些东西阻止mysql计划器正确估计成本,如果计划器没有看到连接变量和子查询变量相同,那么子查询可以通过强制某个路径来优于连接)。
结论是,如果您想确定哪一种查询性能更好,就应该同时测试连接和子查询变量。
对于第二个类,比较没有意义,因为这些查询不能使用连接重写,在这种情况下,子查询是完成所需任务的自然方式,您不应该歧视它们。
子查询能够动态地计算聚合函数。 例如,找到这本书的最低价格,并得到所有以这个价格出售的书。 1)使用子查询:
SELECT titles, price
FROM Books, Orders
WHERE price =
(SELECT MIN(price)
FROM Orders) AND (Books.ID=Orders.ID);
2)使用join
SELECT MIN(price)
FROM Orders;
-----------------
2.99
SELECT titles, price
FROM Books b
INNER JOIN Orders o
ON b.ID = o.ID
WHERE o.price = 2.99;
我只是在考虑同样的问题,但我在FROM部分使用子查询。 我需要连接和查询大表,“从”表有2800万条记录,但结果只有128个这样小的结果大数据!我在它上面使用MAX()函数。
首先,我使用LEFT JOIN,因为我认为这是正确的方式,mysql可以优化等。 第二次只是为了测试,我重写了针对JOIN的子选择。
LEFT JOIN运行时:1.12s SUB-SELECT运行时间:0.06秒
子选择比连接快18倍!只是在chokito广告。subselect看起来很糟糕,但结果…