我如何格式化一个浮点数,使它不包含尾随零?换句话说,我希望得到的字符串尽可能短。
例如:
3 -> "3"
3. -> "3"
3.0 -> "3"
3.1 -> "3.1"
3.14 -> "3.14"
3.140 -> "3.14"
我如何格式化一个浮点数,使它不包含尾随零?换句话说,我希望得到的字符串尽可能短。
例如:
3 -> "3"
3. -> "3"
3.0 -> "3"
3.1 -> "3.1"
3.14 -> "3.14"
3.140 -> "3.14"
当前回答
“(5g)。”format (x)
我用这个来格式化浮点到尾零。
其他回答
你可以使用%g来实现:
'%g'%(3.140)
或者,Python≥2.6:
'{0:g}'.format(3.140)
或者,Python≥3.6:
f'{3.140:g}'
格式:g cause (among other things)
不重要的后面的零[是] 从意义上移除,和 如果有,小数点也会被移除 后面没有剩余数字。
你可以像这样使用max():
打印(max (int (x), x)
以下是答案:
import numpy
num1 = 3.1400
num2 = 3.000
numpy.format_float_positional(num1, 3, trim='-')
numpy.format_float_positional(num2, 3, trim='-')
输出“3.14”和“3”
Trim ='-'删除后面的0和小数。
一个新的挑战者出现了。
def prettify_float(real: float, precision: int = 2) -> str:
'''
Prettify the passed floating-point number into a human-readable string,
rounded and truncated to the passed number of decimal places.
This converter prettifies floating-point numbers for human consumption,
producing more readable results than the default :meth:`float.__str__`
dunder method. Notably, this converter:
* Strips all ignorable trailing zeroes and decimal points from this number
(e.g., ``3`` rather than either ``3.`` or ``3.0``).
* Rounds to the passed precision for perceptual uniformity.
Parameters
----------
real : float
Arbitrary floating-point number to be prettified.
precision : int, optional
**Precision** (i.e., number of decimal places to round to). Defaults to
a precision of 2 decimal places.
Returns
----------
str
Human-readable string prettified from this floating-point number.
Raises
----------
ValueError
If this precision is negative.
'''
# If this precision is negative, raise an exception.
if precision < 0:
raise ValueError(f'Negative precision {precision} unsupported.')
# Else, this precision is non-negative.
# String prettified from this floating-point number. In order:
# * Coerce this number into a string rounded to this precision.
# * Truncate all trailing zeroes from this string.
# * Truncate any trailing decimal place if any from this string.
result = f'{real:.{precision}f}'.rstrip('0').rstrip('.')
# If rounding this string from a small negative number (e.g., "-0.001")
# yielded the anomalous result of "-0", return "0" instead; else, return
# this result as is.
return '0' if result == '-0' else result
不要相信我的谎言
pytest风格的单元测试,否则就不会发生。
def test_prettify_float() -> None:
'''
Test usage of the :func:`prettify_float` prettifier.
'''
# Defer test-specific imports.
from pytest import raises
# Assert this function prettifies zero as expected.
assert prettify_float(0.0) == '0'
# Assert this function prettifies a negative integer as expected.
assert prettify_float(-2.0) == '-2'
# Assert this prettifier prettifies a small negative float as expected.
assert prettify_float(-0.001) == '0'
# Assert this prettifier prettifies a larger negative float as expected.
assert prettify_float(-2.718281828) == '-2.72'
assert prettify_float(-2.718281828, precision=4) == '-2.7183'
# Assert this function prettifies a positive integer as expected.
assert prettify_float(3.0) == '3'
# Assert this function prettifies a positive float as expected.
assert prettify_float(3.14159265359) == '3.14'
assert prettify_float(3.14159265359, precision=4) == '3.1416'
# Assert this prettifier raises the expected exception when passed a
# negative precision.
with raises(ValueError):
prettify_float(2.718281828, precision=-2)
%100纯Python
忽略那些诱人的简单答案,比如:
琐碎的一行。它们在常见的边缘情况下都失败了,比如整数或小的负浮点数。 第三方包。NumPy, QuantiPhy和more_itertools?你肯定是在开玩笑。不要额外增加维护负担或代码债务。也就是说……
在prettify_float()上抛出@beartype,以增加运行时安全性,你就成功了!你的用户群会对你赞不绝口。那我也是,我很确定我的偏见在这里表现出来了。
另请参阅
这个答案站在巨大的猛犸象的肩膀上,包括:
亚历克斯·马尔泰利聪明的回答。 PolyMesh对Martelli答案的推广,以捕捉小负浮的边缘情况。 Kaushal Modi对PolyMesh的答案进行了概括,以强制实现小数点后两位的精度。
使用宽度足够大的%g,例如'%.99g'。 它将以定点符号打印任何相当大的数字。
编辑:它不起作用
>>> '%.99g' % 0.0000001
'9.99999999999999954748111825886258685613938723690807819366455078125e-08'