我有一个数据结构,本质上相当于一个嵌套的字典。假设它是这样的:

{'new jersey': {'mercer county': {'plumbers': 3,
                                  'programmers': 81},
                'middlesex county': {'programmers': 81,
                                     'salesmen': 62}},
 'new york': {'queens county': {'plumbers': 9,
                                'salesmen': 36}}}

现在,维护和创造这个是相当痛苦的;每次我有一个新的州/县/职业,我都必须通过讨厌的try/catch块创建下层字典。此外,如果我想遍历所有值,就必须创建恼人的嵌套迭代器。

我也可以使用元组作为键,像这样:

{('new jersey', 'mercer county', 'plumbers'): 3,
 ('new jersey', 'mercer county', 'programmers'): 81,
 ('new jersey', 'middlesex county', 'programmers'): 81,
 ('new jersey', 'middlesex county', 'salesmen'): 62,
 ('new york', 'queens county', 'plumbers'): 9,
 ('new york', 'queens county', 'salesmen'): 36}

这使得遍历值非常简单和自然,但在语法上更痛苦的事情,如聚合和查看字典的子集(例如,如果我只想逐个状态查看)。

基本上,有时我想把一个嵌套字典看作一个平面字典,有时我想把它看作一个复杂的层次结构。我可以把这些都打包到一个类中,但似乎有人已经这样做了。或者,似乎有一些非常优雅的语法结构可以做到这一点。

我怎样才能做得更好呢?

附录:我知道setdefault(),但它并不是真正的干净语法。此外,您创建的每个子字典仍然需要手动设置setdefault()。


当前回答

由于您有一个星型模式设计,您可能希望它的结构更像一个关系表,而不是字典。

import collections

class Jobs( object ):
    def __init__( self, state, county, title, count ):
        self.state= state
        self.count= county
        self.title= title
        self.count= count

facts = [
    Jobs( 'new jersey', 'mercer county', 'plumbers', 3 ),
    ...

def groupBy( facts, name ):
    total= collections.defaultdict( int )
    for f in facts:
        key= getattr( f, name )
        total[key] += f.count

这类事情对于创建一个没有SQL开销的类似数据仓库的设计大有帮助。

其他回答

对于下面(从上面复制),是否有一种方法来实现append函数。我试图使用嵌套字典存储值作为数组。

class Vividict(dict):
    def __missing__(self, key):
        value = self[key] = type(self)() # retain local pointer to value
    return value  

我目前的实现如下:

totalGeneHash=Vividict()
        
for keys in GenHash:
    for second in GenHash[keys]:
        if keys in sampleHash:
            total_val = GenHash[keys][second]
                totalGeneHash[gene][keys].append(total_val)
This is the error I get: AttributeError: 'Vividict' object has no attribute 'append'

如果嵌套层的数量很少,我使用collections.defaultdict:

from collections import defaultdict

def nested_dict_factory(): 
  return defaultdict(int)
def nested_dict_factory2(): 
  return defaultdict(nested_dict_factory)
db = defaultdict(nested_dict_factory2)

db['new jersey']['mercer county']['plumbers'] = 3
db['new jersey']['mercer county']['programmers'] = 81

像这样使用defaultdict可以避免大量混乱的setdefault()、get()等。

你可以使用Addict: https://github.com/mewwts/addict

>>> from addict import Dict
>>> my_new_shiny_dict = Dict()
>>> my_new_shiny_dict.a.b.c.d.e = 2
>>> my_new_shiny_dict
{'a': {'b': {'c': {'d': {'e': 2}}}}}
class JobDb(object):
    def __init__(self):
        self.data = []
        self.all = set()
        self.free = []
        self.index1 = {}
        self.index2 = {}
        self.index3 = {}

    def _indices(self,(key1,key2,key3)):
        indices = self.all.copy()
        wild = False
        for index,key in ((self.index1,key1),(self.index2,key2),
                                             (self.index3,key3)):
            if key is not None:
                indices &= index.setdefault(key,set())
            else:
                wild = True
        return indices, wild

    def __getitem__(self,key):
        indices, wild = self._indices(key)
        if wild:
            return dict(self.data[i] for i in indices)
        else:
            values = [self.data[i][-1] for i in indices]
            if values:
                return values[0]

    def __setitem__(self,key,value):
        indices, wild = self._indices(key)
        if indices:
            for i in indices:
                self.data[i] = key,value
        elif wild:
            raise KeyError(k)
        else:
            if self.free:
                index = self.free.pop(0)
                self.data[index] = key,value
            else:
                index = len(self.data)
                self.data.append((key,value))
                self.all.add(index)
            self.index1.setdefault(key[0],set()).add(index)
            self.index2.setdefault(key[1],set()).add(index)
            self.index3.setdefault(key[2],set()).add(index)

    def __delitem__(self,key):
        indices,wild = self._indices(key)
        if not indices:
            raise KeyError
        self.index1[key[0]] -= indices
        self.index2[key[1]] -= indices
        self.index3[key[2]] -= indices
        self.all -= indices
        for i in indices:
            self.data[i] = None
        self.free.extend(indices)

    def __len__(self):
        return len(self.all)

    def __iter__(self):
        for key,value in self.data:
            yield key

例子:

>>> db = JobDb()
>>> db['new jersey', 'mercer county', 'plumbers'] = 3
>>> db['new jersey', 'mercer county', 'programmers'] = 81
>>> db['new jersey', 'middlesex county', 'programmers'] = 81
>>> db['new jersey', 'middlesex county', 'salesmen'] = 62
>>> db['new york', 'queens county', 'plumbers'] = 9
>>> db['new york', 'queens county', 'salesmen'] = 36

>>> db['new york', None, None]
{('new york', 'queens county', 'plumbers'): 9,
 ('new york', 'queens county', 'salesmen'): 36}

>>> db[None, None, 'plumbers']
{('new jersey', 'mercer county', 'plumbers'): 3,
 ('new york', 'queens county', 'plumbers'): 9}

>>> db['new jersey', 'mercer county', None]
{('new jersey', 'mercer county', 'plumbers'): 3,
 ('new jersey', 'mercer county', 'programmers'): 81}

>>> db['new jersey', 'middlesex county', 'programmers']
81

>>>

编辑:现在使用通配符(None)查询时返回字典,否则返回单值。

可以对Collections.defaultdict进行子类化以生成嵌套的dict。然后向该类添加任何有用的迭代方法。

>>> from collections import defaultdict
>>> class nesteddict(defaultdict):
    def __init__(self):
        defaultdict.__init__(self, nesteddict)
    def walk(self):
        for key, value in self.iteritems():
            if isinstance(value, nesteddict):
                for tup in value.walk():
                    yield (key,) + tup
            else:
                yield key, value


>>> nd = nesteddict()
>>> nd['new jersey']['mercer county']['plumbers'] = 3
>>> nd['new jersey']['mercer county']['programmers'] = 81
>>> nd['new jersey']['middlesex county']['programmers'] = 81
>>> nd['new jersey']['middlesex county']['salesmen'] = 62
>>> nd['new york']['queens county']['plumbers'] = 9
>>> nd['new york']['queens county']['salesmen'] = 36
>>> for tup in nd.walk():
    print tup


('new jersey', 'mercer county', 'programmers', 81)
('new jersey', 'mercer county', 'plumbers', 3)
('new jersey', 'middlesex county', 'programmers', 81)
('new jersey', 'middlesex county', 'salesmen', 62)
('new york', 'queens county', 'salesmen', 36)
('new york', 'queens county', 'plumbers', 9)