I am using matplotlib to make scatter plots. Each point on the scatter plot is associated with a named object. I would like to be able to see the name of an object when I hover my cursor over the point on the scatter plot associated with that object. In particular, it would be nice to be able to quickly see the names of the points that are outliers. The closest thing I have been able to find while searching here is the annotate command, but that appears to create a fixed label on the plot. Unfortunately, with the number of points that I have, the scatter plot would be unreadable if I labeled each point. Does anyone know of a way to create labels that only appear when the cursor hovers in the vicinity of that point?
当前回答
基于Markus Dutschke”和“ImportanceOfBeingErnest”,我简化了代码,使其更加模块化。
此外,这也不需要安装额外的包。
import matplotlib.pylab as plt
import numpy as np
plt.close('all')
fh, ax = plt.subplots()
#Generate some data
y,x = np.histogram(np.random.randn(10000), bins=500)
x = x[:-1]
colors = ['#0000ff', '#00ff00','#ff0000']
x2, y2 = x,y/10
x3, y3 = x, np.random.randn(500)*10+40
#Plot
h1 = ax.plot(x, y, color=colors[0])
h2 = ax.plot(x2, y2, color=colors[1])
h3 = ax.scatter(x3, y3, color=colors[2], s=1)
artists = h1 + h2 + [h3] #concatenating lists
labels = [list('ABCDE'*100),list('FGHIJ'*100),list('klmno'*100)] #define labels shown
#___ Initialize annotation arrow
annot = ax.annotate("", xy=(0,0), xytext=(20,20),textcoords="offset points",
bbox=dict(boxstyle="round", fc="w"),
arrowprops=dict(arrowstyle="->"))
annot.set_visible(False)
def on_plot_hover(event):
if event.inaxes != ax: #exit if mouse is not on figure
return
is_vis = annot.get_visible() #check if an annotation is visible
# x,y = event.xdata,event.ydata #coordinates of mouse in graph
for ii, artist in enumerate(artists):
is_contained, dct = artist.contains(event)
if(is_contained):
if('get_data' in dir(artist)): #for plot
data = list(zip(*artist.get_data()))
elif('get_offsets' in dir(artist)): #for scatter
data = artist.get_offsets().data
inds = dct['ind'] #get which data-index is under the mouse
#___ Set Annotation settings
xy = data[inds[0]] #get 1st position only
annot.xy = xy
annot.set_text(f'pos={xy},text={labels[ii][inds[0]]}')
annot.get_bbox_patch().set_edgecolor(colors[ii])
annot.get_bbox_patch().set_alpha(0.7)
annot.set_visible(True)
fh.canvas.draw_idle()
else:
if is_vis:
annot.set_visible(False) #disable when not hovering
fh.canvas.draw_idle()
fh.canvas.mpl_connect('motion_notify_event', on_plot_hover)
给出以下结果:
其他回答
在matplotlib状态栏中显示对象信息
特性
不需要额外的库 干净的情节 没有厂牌和艺人的重叠 支持多艺术家标签 可以处理来自不同绘图调用的艺术家(如scatter, plot, add_patch) 库风格的代码
Code
### imports
import matplotlib as mpl
import matplotlib.pylab as plt
import numpy as np
# https://stackoverflow.com/a/47166787/7128154
# https://matplotlib.org/3.3.3/api/collections_api.html#matplotlib.collections.PathCollection
# https://matplotlib.org/3.3.3/api/path_api.html#matplotlib.path.Path
# https://stackoverflow.com/questions/15876011/add-information-to-matplotlib-navigation-toolbar-status-bar
# https://stackoverflow.com/questions/36730261/matplotlib-path-contains-point
# https://stackoverflow.com/a/36335048/7128154
class StatusbarHoverManager:
"""
Manage hover information for mpl.axes.Axes object based on appearing
artists.
Attributes
----------
ax : mpl.axes.Axes
subplot to show status information
artists : list of mpl.artist.Artist
elements on the subplot, which react to mouse over
labels : list (list of strings) or strings
each element on the top level corresponds to an artist.
if the artist has items
(i.e. second return value of contains() has key 'ind'),
the element has to be of type list.
otherwise the element if of type string
cid : to reconnect motion_notify_event
"""
def __init__(self, ax):
assert isinstance(ax, mpl.axes.Axes)
def hover(event):
if event.inaxes != ax:
return
info = 'x={:.2f}, y={:.2f}'.format(event.xdata, event.ydata)
ax.format_coord = lambda x, y: info
cid = ax.figure.canvas.mpl_connect("motion_notify_event", hover)
self.ax = ax
self.cid = cid
self.artists = []
self.labels = []
def add_artist_labels(self, artist, label):
if isinstance(artist, list):
assert len(artist) == 1
artist = artist[0]
self.artists += [artist]
self.labels += [label]
def hover(event):
if event.inaxes != self.ax:
return
info = 'x={:.2f}, y={:.2f}'.format(event.xdata, event.ydata)
for aa, artist in enumerate(self.artists):
cont, dct = artist.contains(event)
if not cont:
continue
inds = dct.get('ind')
if inds is not None: # artist contains items
for ii in inds:
lbl = self.labels[aa][ii]
info += '; artist [{:d}, {:d}]: {:}'.format(
aa, ii, lbl)
else:
lbl = self.labels[aa]
info += '; artist [{:d}]: {:}'.format(aa, lbl)
self.ax.format_coord = lambda x, y: info
self.ax.figure.canvas.mpl_disconnect(self.cid)
self.cid = self.ax.figure.canvas.mpl_connect(
"motion_notify_event", hover)
def demo_StatusbarHoverManager():
fig, ax = plt.subplots()
shm = StatusbarHoverManager(ax)
poly = mpl.patches.Polygon(
[[0,0], [3, 5], [5, 4], [6,1]], closed=True, color='green', zorder=0)
artist = ax.add_patch(poly)
shm.add_artist_labels(artist, 'polygon')
artist = ax.scatter([2.5, 1, 2, 3], [6, 1, 1, 7], c='blue', s=10**2)
lbls = ['point ' + str(ii) for ii in range(4)]
shm.add_artist_labels(artist, lbls)
artist = ax.plot(
[0, 0, 1, 5, 3], [0, 1, 1, 0, 2], marker='o', color='red')
lbls = ['segment ' + str(ii) for ii in range(5)]
shm.add_artist_labels(artist, lbls)
plt.show()
# --- main
if __name__== "__main__":
demo_StatusbarHoverManager()
其他答案没有解决我在最新版本的Jupyter内联matplotlib图中正确显示工具提示的需求。这条是可行的:
import matplotlib.pyplot as plt
import numpy as np
import mplcursors
np.random.seed(42)
fig, ax = plt.subplots()
ax.scatter(*np.random.random((2, 26)))
ax.set_title("Mouse over a point")
crs = mplcursors.cursor(ax,hover=True)
crs.connect("add", lambda sel: sel.annotation.set_text(
'Point {},{}'.format(sel.target[0], sel.target[1])))
plt.show()
当用鼠标浏览一个点时,会导致如下图所示:
基于Markus Dutschke”和“ImportanceOfBeingErnest”,我简化了代码,使其更加模块化。
此外,这也不需要安装额外的包。
import matplotlib.pylab as plt
import numpy as np
plt.close('all')
fh, ax = plt.subplots()
#Generate some data
y,x = np.histogram(np.random.randn(10000), bins=500)
x = x[:-1]
colors = ['#0000ff', '#00ff00','#ff0000']
x2, y2 = x,y/10
x3, y3 = x, np.random.randn(500)*10+40
#Plot
h1 = ax.plot(x, y, color=colors[0])
h2 = ax.plot(x2, y2, color=colors[1])
h3 = ax.scatter(x3, y3, color=colors[2], s=1)
artists = h1 + h2 + [h3] #concatenating lists
labels = [list('ABCDE'*100),list('FGHIJ'*100),list('klmno'*100)] #define labels shown
#___ Initialize annotation arrow
annot = ax.annotate("", xy=(0,0), xytext=(20,20),textcoords="offset points",
bbox=dict(boxstyle="round", fc="w"),
arrowprops=dict(arrowstyle="->"))
annot.set_visible(False)
def on_plot_hover(event):
if event.inaxes != ax: #exit if mouse is not on figure
return
is_vis = annot.get_visible() #check if an annotation is visible
# x,y = event.xdata,event.ydata #coordinates of mouse in graph
for ii, artist in enumerate(artists):
is_contained, dct = artist.contains(event)
if(is_contained):
if('get_data' in dir(artist)): #for plot
data = list(zip(*artist.get_data()))
elif('get_offsets' in dir(artist)): #for scatter
data = artist.get_offsets().data
inds = dct['ind'] #get which data-index is under the mouse
#___ Set Annotation settings
xy = data[inds[0]] #get 1st position only
annot.xy = xy
annot.set_text(f'pos={xy},text={labels[ii][inds[0]]}')
annot.get_bbox_patch().set_edgecolor(colors[ii])
annot.get_bbox_patch().set_alpha(0.7)
annot.set_visible(True)
fh.canvas.draw_idle()
else:
if is_vis:
annot.set_visible(False) #disable when not hovering
fh.canvas.draw_idle()
fh.canvas.mpl_connect('motion_notify_event', on_plot_hover)
给出以下结果:
来自http://matplotlib.sourceforge.net/examples/event_handling/pick_event_demo.html:
from matplotlib.pyplot import figure, show
import numpy as npy
from numpy.random import rand
if 1: # picking on a scatter plot (matplotlib.collections.RegularPolyCollection)
x, y, c, s = rand(4, 100)
def onpick3(event):
ind = event.ind
print('onpick3 scatter:', ind, npy.take(x, ind), npy.take(y, ind))
fig = figure()
ax1 = fig.add_subplot(111)
col = ax1.scatter(x, y, 100*s, c, picker=True)
#fig.savefig('pscoll.eps')
fig.canvas.mpl_connect('pick_event', onpick3)
show()
这个食谱绘制了一个关于选择数据点的注释:http://scipy-cookbook.readthedocs.io/items/Matplotlib_Interactive_Plotting.html。 这个配方绘制了一个工具提示,但它需要wxPython: matplotlib中的点和线工具提示?
我做了一个多行注释系统,添加到:https://stackoverflow.com/a/47166787/10302020。 最新版本: https://github.com/AidenBurgess/MultiAnnotationLineGraph
只需更改底部部分中的数据。
import matplotlib.pyplot as plt
def update_annot(ind, line, annot, ydata):
x, y = line.get_data()
annot.xy = (x[ind["ind"][0]], y[ind["ind"][0]])
# Get x and y values, then format them to be displayed
x_values = " ".join(list(map(str, ind["ind"])))
y_values = " ".join(str(ydata[n]) for n in ind["ind"])
text = "{}, {}".format(x_values, y_values)
annot.set_text(text)
annot.get_bbox_patch().set_alpha(0.4)
def hover(event, line_info):
line, annot, ydata = line_info
vis = annot.get_visible()
if event.inaxes == ax:
# Draw annotations if cursor in right position
cont, ind = line.contains(event)
if cont:
update_annot(ind, line, annot, ydata)
annot.set_visible(True)
fig.canvas.draw_idle()
else:
# Don't draw annotations
if vis:
annot.set_visible(False)
fig.canvas.draw_idle()
def plot_line(x, y):
line, = plt.plot(x, y, marker="o")
# Annotation style may be changed here
annot = ax.annotate("", xy=(0, 0), xytext=(-20, 20), textcoords="offset points",
bbox=dict(boxstyle="round", fc="w"),
arrowprops=dict(arrowstyle="->"))
annot.set_visible(False)
line_info = [line, annot, y]
fig.canvas.mpl_connect("motion_notify_event",
lambda event: hover(event, line_info))
# Your data values to plot
x1 = range(21)
y1 = range(0, 21)
x2 = range(21)
y2 = range(0, 42, 2)
# Plot line graphs
fig, ax = plt.subplots()
plot_line(x1, y1)
plot_line(x2, y2)
plt.show()
推荐文章
- 插入一行到熊猫数据框架
- 要列出Pandas DataFrame列
- 在Django模型中存储电话号码的最佳方法是什么?
- 从导入的模块中模拟函数
- 滚动或滑动窗口迭代器?
- python的方法找到最大值和它的索引在一个列表?
- 如何读取文件的前N行?
- 如何删除matplotlib中的顶部和右侧轴?
- 解析.py文件,读取AST,修改它,然后写回修改后的源代码
- Visual Studio Code:如何调试Python脚本的参数
- 使用元组/列表等等。从输入vs直接引用类型如list/tuple/etc
- 结合conda环境。Yml和PIP requirements.txt
- 将命名元组转换为字典
- 如何使x轴和y轴的刻度相等呢?
- Numpy在这里函数多个条件