我听过很多关于Akka框架(Java/Scala服务平台)的赞不绝口,但到目前为止,还没有看到很多实际用例的例子。因此,我很有兴趣了解开发人员如何成功地使用它。

只有一个限制:请不要包括写聊天服务器的情况。 (为什么?因为这已经被过度用作许多类似事情的例子)


当前回答

到目前为止,我已经在两个实际项目中非常成功地使用了它。两者都在接近实时的交通信息领域(就像高速公路上的汽车一样),分布在几个节点上,集成各方之间的消息,可靠的后端系统。我现在还不能透露客户的具体情况,当我得到批准的时候,也许可以把它作为参考。

Akka确实完成了这些项目,尽管我们在0.7版本时就开始了。(顺便说一下,我们正在使用scala)

最大的优势之一是,你可以轻松地用角色和消息组成一个系统,几乎没有样板,它的伸缩性非常好,没有手摇线程的复杂性,你几乎可以免费地在对象之间传递异步消息。

It is very good in modeling any type of asynchronous message handling. I would prefer to write any type of (web) services system in this style than any other style. (Have you ever tried to write an asynchronous web service (server side) with JAX-WS? that's a lot of plumbing). So I would say any system that does not want to hang on one of its components because everything is implicitly called using synchronous methods, and that one component is locking on something. It is very stable and the let-it-crash + supervisor solution to failure really works well. Everything is easy to setup programmatically and not hard to unit test.

还有一些优秀的附加模块。 Camel模块可以很好地插入到Akka中,并且可以使用可配置的端点轻松开发异步服务。

我对这个框架非常满意,它正在成为我们所构建的连接系统的事实上的标准。

其他回答

我们正在使用akka及其camel插件为twimpact.com分发我们的分析和趋势处理。我们必须每秒处理50到1000条消息。除了使用camel进行多节点处理外,它还用于将单个处理器上的工作分配给多个工作人员,以获得最大性能。工作得很好,但需要了解如何处理拥塞。

免责声明:我是Akka的采购订单

此外,它还提供了一个更容易推理和纠正的并发大杂烩(参与者、代理、数据流并发),并以STM的形式进行并发控制。

下面是一些你可以考虑的用例:

Transaction processing (online gaming, finance, statistics, betting, social media, telecom, ...) scale up, scale out, fault-tolerance / HA Service backend (any industry, any app) service REST, SOAP, cometd etc act as message hub / integration layer scale up, scale out, fault-tolerance / HA Snap-in concurrency/parallelism ( any app ) Correct Simple to work with and understand Just add the jars to your existing JVM project (use Scala, Java, Groovy or JRuby) Batch processing ( any industry ) Camel integration to hook up with batch data sources Actors divide and conquer the batch workloads Communications hub ( telecom, web media, mobile media ) scale up, scale out, fault-tolerance / HA Game server (online gaming, betting) scale up, scale out, fault-tolerance / HA BI/datamining/general purpose crunching scale up, scale out, fault-tolerance / HA insert other nice use cases here

您可以将Akka用于几种不同的事情。

我在一个网站上工作,在那里我将技术堆栈迁移到Scala和Akka。我们用它来处理网站上发生的几乎所有事情。尽管你可能认为一个聊天的例子很糟糕,但基本上都是一样的:

网站上的实时更新(例如,浏览量,点赞,…) 显示实时用户评论 通知服务 搜索和其他各种服务

特别是实时更新很容易,因为他们归结为什么聊天的例子ist。服务部分是另一个有趣的话题,因为你可以简单地选择使用远程参与者,即使你的应用程序不是集群的,你也可以轻松地将它部署到不同的机器上。

我还将Akka用于PCB自动外接应用程序,其想法是能够从笔记本电脑扩展到数据中心。你给它的力量越大,结果就会越好。如果您尝试使用常见的并发性,这是非常难以实现的,因为Akka还提供了位置透明性。

目前作为一个空闲时间的项目,我正在构建一个只使用演员的web框架。同样,它的好处是从一台机器到整个机器集群的可伸缩性。此外,使用消息驱动方法可以使您的软件从一开始就面向服务。您拥有所有这些良好的组件,它们彼此通信,但不一定相互了解,它们位于同一台机器上,甚至不在同一个数据中心中。

自从谷歌阅读器关闭后,我开始使用RSS阅读器,当然使用Akka。对我来说,这完全是关于封装的服务。总之:参与者模型本身是您首先应该采用的,Akka是一个非常可靠的框架,可以帮助您实现它,并在此过程中获得许多好处。

我们在语音对话系统(primetalk)中使用Akka。无论是对内还是对外。为了在单个集群节点上同时运行许多电话通道,显然需要一些多线程框架。Akka的工作非常完美。我们以前有过java并发性的噩梦。和Akka一起,它就像一个秋千——它简单地工作。坚固可靠。24 * 7,不间断。

在通道中,我们有并行处理的实时事件流。特别是: -冗长的自动语音识别-由演员完成; -音频输出生成器,混合一些音频源(包括合成语音); 文本到语音的转换是一个单独的在频道之间共享的角色集 -语义和知识加工。

为了实现复杂信号处理的互连,我们使用SynapseGrid。它具有在复杂参与者系统中对DataFlow进行编译时检查的好处。

我们使用Akka来异步处理REST调用——与异步web服务器(基于net)一起,与传统的每个用户请求线程模型相比,我们可以在每个节点/服务器服务的用户数量上实现10倍的提高。

告诉你的老板,你的AWS托管费用将下降10倍,这是一个不用动脑筋的事情!嘘……不过别告诉亚马逊…:)