我听过很多关于Akka框架(Java/Scala服务平台)的赞不绝口,但到目前为止,还没有看到很多实际用例的例子。因此,我很有兴趣了解开发人员如何成功地使用它。

只有一个限制:请不要包括写聊天服务器的情况。 (为什么?因为这已经被过度用作许多类似事情的例子)


当前回答

我们在语音对话系统(primetalk)中使用Akka。无论是对内还是对外。为了在单个集群节点上同时运行许多电话通道,显然需要一些多线程框架。Akka的工作非常完美。我们以前有过java并发性的噩梦。和Akka一起,它就像一个秋千——它简单地工作。坚固可靠。24 * 7,不间断。

在通道中,我们有并行处理的实时事件流。特别是: -冗长的自动语音识别-由演员完成; -音频输出生成器,混合一些音频源(包括合成语音); 文本到语音的转换是一个单独的在频道之间共享的角色集 -语义和知识加工。

为了实现复杂信号处理的互连,我们使用SynapseGrid。它具有在复杂参与者系统中对DataFlow进行编译时检查的好处。

其他回答

我们在工作中的几个项目中使用了Akka,其中最有趣的是与车辆碰撞修复有关。主要在英国,但现在扩展到美国,亚洲,大洋洲和欧洲。 我们使用参与者来确保实时提供碰撞修复信息,以实现安全且具有成本效益的车辆修复。

关于Akka的问题其实更多的是“你不能用Akka做什么”。它与强大的框架集成的能力、强大的抽象性和所有的容错能力使它成为一个非常全面的工具包。

我们在语音对话系统(primetalk)中使用Akka。无论是对内还是对外。为了在单个集群节点上同时运行许多电话通道,显然需要一些多线程框架。Akka的工作非常完美。我们以前有过java并发性的噩梦。和Akka一起,它就像一个秋千——它简单地工作。坚固可靠。24 * 7,不间断。

在通道中,我们有并行处理的实时事件流。特别是: -冗长的自动语音识别-由演员完成; -音频输出生成器,混合一些音频源(包括合成语音); 文本到语音的转换是一个单独的在频道之间共享的角色集 -语义和知识加工。

为了实现复杂信号处理的互连,我们使用SynapseGrid。它具有在复杂参与者系统中对DataFlow进行编译时检查的好处。

我们正在使用akka及其camel插件为twimpact.com分发我们的分析和趋势处理。我们必须每秒处理50到1000条消息。除了使用camel进行多节点处理外,它还用于将单个处理器上的工作分配给多个工作人员,以获得最大性能。工作得很好,但需要了解如何处理拥塞。

免责声明:我是Akka的采购订单

此外,它还提供了一个更容易推理和纠正的并发大杂烩(参与者、代理、数据流并发),并以STM的形式进行并发控制。

下面是一些你可以考虑的用例:

Transaction processing (online gaming, finance, statistics, betting, social media, telecom, ...) scale up, scale out, fault-tolerance / HA Service backend (any industry, any app) service REST, SOAP, cometd etc act as message hub / integration layer scale up, scale out, fault-tolerance / HA Snap-in concurrency/parallelism ( any app ) Correct Simple to work with and understand Just add the jars to your existing JVM project (use Scala, Java, Groovy or JRuby) Batch processing ( any industry ) Camel integration to hook up with batch data sources Actors divide and conquer the batch workloads Communications hub ( telecom, web media, mobile media ) scale up, scale out, fault-tolerance / HA Game server (online gaming, betting) scale up, scale out, fault-tolerance / HA BI/datamining/general purpose crunching scale up, scale out, fault-tolerance / HA insert other nice use cases here

我们使用Akka来异步处理REST调用——与异步web服务器(基于net)一起,与传统的每个用户请求线程模型相比,我们可以在每个节点/服务器服务的用户数量上实现10倍的提高。

告诉你的老板,你的AWS托管费用将下降10倍,这是一个不用动脑筋的事情!嘘……不过别告诉亚马逊…:)