我如何排序一个NumPy数组的第n列?

例如,给定:

a = array([[9, 2, 3],
           [4, 5, 6],
           [7, 0, 5]])

我想对a的行按第二列进行排序,得到:

array([[7, 0, 5],
       [9, 2, 3],
       [4, 5, 6]])

当前回答

如果有人想在程序的关键部分使用排序,这里是不同方案的性能比较:

import numpy as np
table = np.random.rand(5000, 10)

%timeit table.view('f8,f8,f8,f8,f8,f8,f8,f8,f8,f8').sort(order=['f9'], axis=0)
1000 loops, best of 3: 1.88 ms per loop

%timeit table[table[:,9].argsort()]
10000 loops, best of 3: 180 µs per loop

import pandas as pd
df = pd.DataFrame(table)
%timeit df.sort_values(9, ascending=True)
1000 loops, best of 3: 400 µs per loop

所以,看起来使用argsort进行索引是目前为止最快的方法…

其他回答

def sort_np_array(x, column=None, flip=False):
    x = x[np.argsort(x[:, column])]
    if flip:
        x = np.flip(x, axis=0)
    return x

数组在原来的问题:

a = np.array([[9, 2, 3],
              [4, 5, 6],
              [7, 0, 5]])

问题作者所期望的sort_np_array函数的结果:

sort_np_array(a, column=1, flip=False)
[2]: array([[7, 0, 5],
            [9, 2, 3],
            [4, 5, 6]])

感谢这篇文章:https://stackoverflow.com/a/5204280/13890678

我用结构化数组找到了一个更“通用”的答案。 我认为这种方法的一个优点是代码更容易阅读。

import numpy as np
a = np.array([[9, 2, 3],
           [4, 5, 6],
           [7, 0, 5]])

struct_a = np.core.records.fromarrays(
    a.transpose(), names="col1, col2, col3", formats="i8, i8, i8"
)
struct_a.sort(order="col2")

print(struct_a)
[(7, 0, 5) (9, 2, 3) (4, 5, 6)]
import numpy as np
a=np.array([[21,20,19,18,17],[16,15,14,13,12],[11,10,9,8,7],[6,5,4,3,2]])
y=np.argsort(a[:,2],kind='mergesort')# a[:,2]=[19,14,9,4]
a=a[y]
print(a)

期望的输出是[[6、5、4、3、2],[11、10、9、8、7]、[12]16日,15日,14日,13日,[17]19日21日20日,18日)

请注意,argsort(numArray)返回numArray的索引,因为它应该以排序的方式排列。

例子

x=np.array([8,1,5]) 
z=np.argsort(x) #[1,3,0] are the **indices of the predicted sorted array**
print(x[z]) #boolean indexing which sorts the array on basis of indices saved in z

答案是[1,5,8]

如果有人想在程序的关键部分使用排序,这里是不同方案的性能比较:

import numpy as np
table = np.random.rand(5000, 10)

%timeit table.view('f8,f8,f8,f8,f8,f8,f8,f8,f8,f8').sort(order=['f9'], axis=0)
1000 loops, best of 3: 1.88 ms per loop

%timeit table[table[:,9].argsort()]
10000 loops, best of 3: 180 µs per loop

import pandas as pd
df = pd.DataFrame(table)
%timeit df.sort_values(9, ascending=True)
1000 loops, best of 3: 400 µs per loop

所以,看起来使用argsort进行索引是目前为止最快的方法…

#用于按列1排序

indexofsort=np.argsort(dataset[:,0],axis=-1,kind='stable') 
dataset   = dataset[indexofsort,:]