我如何排序一个NumPy数组的第n列?
例如,给定:
a = array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5]])
我想对a的行按第二列进行排序,得到:
array([[7, 0, 5],
[9, 2, 3],
[4, 5, 6]])
我如何排序一个NumPy数组的第n列?
例如,给定:
a = array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5]])
我想对a的行按第二列进行排序,得到:
array([[7, 0, 5],
[9, 2, 3],
[4, 5, 6]])
当前回答
熊猫的方法只是为了完整性:
a = np.array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5]])
a = pd.DataFrame(a)
a.sort_values(1, ascending=True).to_numpy()
array([[7, 0, 5], # '1' means sort by second column
[9, 2, 3],
[4, 5, 6]])
prl900 基准测试,与公认的答案相比:
%timeit pandas_df.sort_values(9, ascending=True)
1000 loops, best of 3: 400 µs per loop
%timeit numpy_table[numpy_table[:,9].argsort()]
10000 loops, best of 3: 180 µs per loop
其他回答
你可以按照Steve Tjoa的方法对多个列进行排序,使用像归并排序这样的稳定排序,并从最不重要的列到最重要的列对索引进行排序:
a = a[a[:,2].argsort()] # First sort doesn't need to be stable.
a = a[a[:,1].argsort(kind='mergesort')]
a = a[a[:,0].argsort(kind='mergesort')]
这是按第0列,第1列,第2列排序。
熊猫的方法只是为了完整性:
a = np.array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5]])
a = pd.DataFrame(a)
a.sort_values(1, ascending=True).to_numpy()
array([[7, 0, 5], # '1' means sort by second column
[9, 2, 3],
[4, 5, 6]])
prl900 基准测试,与公认的答案相比:
%timeit pandas_df.sort_values(9, ascending=True)
1000 loops, best of 3: 400 µs per loop
%timeit numpy_table[numpy_table[:,9].argsort()]
10000 loops, best of 3: 180 µs per loop
#用于按列1排序
indexofsort=np.argsort(dataset[:,0],axis=-1,kind='stable')
dataset = dataset[indexofsort,:]
按a的第二列排序:
a[a[:, 1].argsort()]
这是一个老问题,但如果你需要将其推广到高于2维的数组,下面是可以很容易推广的解决方案:
np.einsum('ij->ij', a[a[:,1].argsort(),:])
对于二维来说,这是一个过度的处理,对于@steve的答案,一个[a[:,1].argsort()]就足够了,但是这个答案不能推广到更高的维度。你可以在这个问题中找到一个3D数组的例子。
输出:
[[7 0 5]
[9 2 3]
[4 5 6]]