如何生成列表的所有排列?例如:

permutations([])
[]

permutations([1])
[1]

permutations([1, 2])
[1, 2]
[2, 1]

permutations([1, 2, 3])
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
[3, 2, 1]

当前回答

人们确实可以对每个排列的第一个元素进行迭代,正如tzwen的答案。然而,这样编写此解决方案更有效:

def all_perms(elements):
    if len(elements) <= 1:
        yield elements  # Only permutation possible = no permutation
    else:
        # Iteration over the first element in the result permutation:
        for (index, first_elmt) in enumerate(elements):
            other_elmts = elements[:index]+elements[index+1:]
            for permutation in all_perms(other_elmts): 
                yield [first_elmt] + permutation

这个解决方案大约快了30%,显然是因为递归以len(元素)<=1而不是0结尾。它的内存效率也高得多,因为它使用了一个生成器函数(通过yield),就像Riccardo Reyes的解决方案一样。

其他回答

#!/usr/bin/env python

def perm(a, k=0):
   if k == len(a):
      print a
   else:
      for i in xrange(k, len(a)):
         a[k], a[i] = a[i] ,a[k]
         perm(a, k+1)
         a[k], a[i] = a[i], a[k]

perm([1,2,3])

输出:

[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 2, 1]
[3, 1, 2]

当我交换列表的内容时,需要一个可变的序列类型作为输入。例如,烫发(list(“ball”)会起作用,而烫发(“ball”)不会起作用,因为你不能更改字符串。

这种Python实现的灵感来自Horowitz、Sahni和Rajasekeran在《计算机算法》一书中提出的算法。

注意,该算法具有n个阶乘时间复杂度,其中n是输入列表的长度

打印跑步结果:

global result
result = [] 

def permutation(li):
if li == [] or li == None:
    return

if len(li) == 1:
    result.append(li[0])
    print result
    result.pop()
    return

for i in range(0,len(li)):
    result.append(li[i])
    permutation(li[:i] + li[i+1:])
    result.pop()    

例子:

permutation([1,2,3])

输出:

[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
[3, 2, 1]

如果不想使用内置方法,例如:

import itertools
list(itertools.permutations([1, 2, 3]))

你可以自己实现permute函数

from collections.abc import Iterable


def permute(iterable: Iterable[str]) -> set[str]:
    perms = set()

    if len(iterable) == 1:
        return {*iterable}

    for index, char in enumerate(iterable):
        perms.update([char + perm for perm in permute(iterable[:index] + iterable[index + 1:])])

    return perms


if __name__ == '__main__':
    print(permute('abc'))
    # {'bca', 'abc', 'cab', 'acb', 'cba', 'bac'}
    print(permute(['1', '2', '3']))
    # {'123', '312', '132', '321', '213', '231'}

用递归求解,遍历元素,取第i个元素,然后问自己:“其余项目的排列是什么”,直到没有更多的元素。

我在这里解释了解决方案:https://www.youtube.com/watch?v=_7GE7psS2b4

class Solution:
    def permute(self,nums:List[int])->List[List[int]]:
        res=[]
        def dfs(nums,path):
            if len(nums)==0:
                res.append(path)
            for i in range(len(nums)):
                dfs(nums[:i]+nums[i+1:],path+[nums[i]])
        dfs(nums,[])
        return res

生成所有可能的排列

我正在使用python3.4:

def calcperm(arr, size):
    result = set([()])
    for dummy_idx in range(size):
        temp = set()
        for dummy_lst in result:
            for dummy_outcome in arr:
                if dummy_outcome not in dummy_lst:
                    new_seq = list(dummy_lst)
                    new_seq.append(dummy_outcome)
                    temp.add(tuple(new_seq))
        result = temp
    return result

测试用例:

lst = [1, 2, 3, 4]
#lst = ["yellow", "magenta", "white", "blue"]
seq = 2
final = calcperm(lst, seq)
print(len(final))
print(final)