如何生成列表的所有排列?例如:

permutations([])
[]

permutations([1])
[1]

permutations([1, 2])
[1, 2]
[2, 1]

permutations([1, 2, 3])
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
[3, 2, 1]

当前回答

我的Python解决方案:

def permutes(input,offset):
    if( len(input) == offset ):
        return [''.join(input)]

    result=[]        
    for i in range( offset, len(input) ):
         input[offset], input[i] = input[i], input[offset]
         result = result + permutes(input,offset+1)
         input[offset], input[i] = input[i], input[offset]
    return result

# input is a "string"
# return value is a list of strings
def permutations(input):
    return permutes( list(input), 0 )

# Main Program
print( permutations("wxyz") )

其他回答

另一种解决方案:

def permutation(flag, k =1 ):
    N = len(flag)
    for i in xrange(0, N):
        if flag[i] != 0:
            continue
        flag[i] = k 
        if k == N:
            print flag
        permutation(flag, k+1)
        flag[i] = 0

permutation([0, 0, 0])

免责声明:无耻的插件由包作者。:)

trotter包与大多数实现的不同之处在于,它生成的伪列表实际上不包含排列,而是描述排列与排序中各个位置之间的映射,从而可以处理非常大的排列“列表”,如本演示所示,它在一个包含字母表中所有字母排列的伪列表中执行相当即时的操作和查找,而不使用比典型网页更多的内存或处理。

在任何情况下,要生成排列列表,我们可以执行以下操作。

import trotter

my_permutations = trotter.Permutations(3, [1, 2, 3])

print(my_permutations)

for p in my_permutations:
    print(p)

输出:

A pseudo-list containing 6 3-permutations of [1, 2, 3].
[1, 2, 3]
[1, 3, 2]
[3, 1, 2]
[3, 2, 1]
[2, 3, 1]
[2, 1, 3]
def permutate(l):
    for i, x in enumerate(l):
        for y in l[i + 1:]:
            yield x, y


if __name__ == '__main__':
    print(list(permutate(list('abcd'))))
    print(list(permutate([1, 2, 3, 4])))

#[('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd'), ('c', 'd')]
#[(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]
def permutations(head, tail=''):
    if len(head) == 0:
        print(tail)
    else:
        for i in range(len(head)):
            permutations(head[:i] + head[i+1:], tail + head[i])

称为:

permutations('abc')
def pzip(c, seq):
    result = []
    for item in seq:
        for i in range(len(item)+1):
            result.append(item[i:]+c+item[:i])
    return result


def perm(line):
    seq = [c for c in line]
    if len(seq) <=1 :
        return seq
    else:
        return pzip(seq[0], perm(seq[1:]))