我试图写一个熊猫数据帧(或可以使用numpy数组)到mysql数据库使用MysqlDB。MysqlDB似乎不理解'nan',我的数据库抛出一个错误,说nan不在字段列表中。我需要找到一种方法将“nan”转换为NoneType。

什么好主意吗?


当前回答

你可以在numpy数组中用None替换nan:

>>> x = np.array([1, np.nan, 3])
>>> y = np.where(np.isnan(x), None, x)
>>> print y
[1.0 None 3.0]
>>> print type(y[1])
<type 'NoneType'>

其他回答

取代np。nan和None在不同版本的熊猫中完成的不同:

if version.parse(pd.__version__) >= version.parse('1.3.0'):
    df = df.replace({np.nan: None})
else:
    df = df.where(pd.notnull(df), None)

这解决了熊猫版本<1.3.0的问题,如果df中的值已经为None,则df.replace({np. replace)nan: None})将切换回np。Nan(反之亦然)。

经过一番摸索,这招对我很管用:

df = df.astype(object).where(pd.notnull(df),None)

只是给@安迪·海登的回答补充了一句:

因为DataFrame。mask是DataFrame的孪生兄弟。其中,它们具有完全相同的签名,但含义相反:

DataFrame。where用于替换条件为False的值。 DataFrame。mask用于替换条件为True的值。

所以在这个问题中,使用df.mask(df.isna(), other=None, inplace=True)可能更直观。

df = df.replace({np.nan: None})

注意:对于<1.4的pandas版本,这会将所有受影响列的dtype更改为object。 为了避免这种情况,请使用以下语法:

df = df.replace(np.nan, None)

这要归功于Github上的这个家伙和Killian Huyghe的评论。

很老了,但我偶然发现了同样的问题。 试着这样做:

df['col_replaced'] = df['col_with_npnans'].apply(lambda x: None if np.isnan(x) else x)