我有一个由多重yield返回的生成器对象。准备调用这个生成器是相当耗时的操作。这就是为什么我想重复使用发电机几次。

y = FunctionWithYield()
for x in y: print(x)
#here must be something to reset 'y'
for x in y: print(x)

当然,我正在考虑将内容复制到简单的列表中。有办法重置我的发电机吗?


请参见:如何提前查看Python生成器中的一个元素?


当前回答

我的答案解决了稍微不同的问题:如果初始化生成器的开销很大,生成每个生成的对象的开销也很大。但是我们需要在多个函数中多次使用生成器。为了只调用一次生成器和每个生成的对象,我们可以使用线程并在不同的线程中运行每个消费方法。由于GIL,我们可能无法实现真正的并行,但我们将实现我们的目标。

这种方法在以下情况下做得很好:深度学习模型处理了大量图像。结果是图像上的很多物体都有很多遮罩。每个掩码都会消耗内存。我们有大约10种方法来进行不同的统计和度量,但它们都是一次性拍摄所有图像。所有的图像都装不下内存。方法可以很容易地重写为接受迭代器。

class GeneratorSplitter:
'''
Split a generator object into multiple generators which will be sincronised. Each call to each of the sub generators will cause only one call in the input generator. This way multiple methods on threads can iterate the input generator , and the generator will cycled only once.
'''

def __init__(self, gen):
    self.gen = gen
    self.consumers: List[GeneratorSplitter.InnerGen] = []
    self.thread: threading.Thread = None
    self.value = None
    self.finished = False
    self.exception = None

def GetConsumer(self):
    # Returns a generator object. 
    cons = self.InnerGen(self)
    self.consumers.append(cons)
    return cons

def _Work(self):
    try:
        for d in self.gen:
            for cons in self.consumers:
                cons.consumed.wait()
                cons.consumed.clear()

            self.value = d

            for cons in self.consumers:
                cons.readyToRead.set()

        for cons in self.consumers:
            cons.consumed.wait()

        self.finished = True

        for cons in self.consumers:
            cons.readyToRead.set()
    except Exception as ex:
        self.exception = ex
        for cons in self.consumers:
            cons.readyToRead.set()

def Start(self):
    self.thread = threading.Thread(target=self._Work)
    self.thread.start()

class InnerGen:
    def __init__(self, parent: "GeneratorSplitter"):
        self.parent: "GeneratorSplitter" = parent
        self.readyToRead: threading.Event = threading.Event()
        self.consumed: threading.Event = threading.Event()
        self.consumed.set()

    def __iter__(self):
        return self

    def __next__(self):
        self.readyToRead.wait()
        self.readyToRead.clear()
        if self.parent.finished:
            raise StopIteration()
        if self.parent.exception:
            raise self.parent.exception
        val = self.parent.value
        self.consumed.set()
        return val

Ussage:

genSplitter = GeneratorSplitter(expensiveGenerator)

metrics={}
executor = ThreadPoolExecutor(max_workers=3)
f1 = executor.submit(mean,genSplitter.GetConsumer())
f2 = executor.submit(max,genSplitter.GetConsumer())
f3 = executor.submit(someFancyMetric,genSplitter.GetConsumer())
genSplitter.Start()

metrics.update(f1.result())
metrics.update(f2.result())
metrics.update(f3.result())

其他回答

可能最简单的解决方案是将昂贵的部分包装在一个对象中,并将其传递给生成器:

data = ExpensiveSetup()
for x in FunctionWithYield(data): pass
for x in FunctionWithYield(data): pass

这样,就可以缓存昂贵的计算。

如果您可以同时将所有结果保存在RAM中,那么可以使用list()将生成器的结果物化到一个普通列表中并使用该列表。

你可以使用itertools.cycle()来实现这一点。 您可以使用此方法创建一个迭代器,然后在迭代器上执行for循环,迭代器将对其值进行循环。

例如:

def generator():
for j in cycle([i for i in range(5)]):
    yield j

gen = generator()
for i in range(20):
    print(next(gen))

将生成20个数字,0到4重复。

医生说:

Note, this member of the toolkit may require significant auxiliary storage (depending on the length of the iterable).

发电机不能倒带。您有以下选项:

再次运行生成器函数,重新启动生成: y = FunctionWithYield() 对于y中的x: print(x) y = FunctionWithYield() 对于y中的x: print(x) 将生成器结果存储在内存或磁盘上的数据结构中,您可以再次迭代: y = list(FunctionWithYield()) 对于y中的x: print(x) #可以再次迭代: 对于y中的x: print(x)

选项1的缺点是它会再次计算值。如果这是cpu密集型的,那么最终需要计算两次。另一方面,2的缺点是存储空间。整个值列表将存储在内存中。如果有太多的价值,那可能是不切实际的。

所以你有一个经典的内存和处理的权衡。我无法想象在不存储值或不重新计算它们的情况下倒带生成器的方法。

您也可以像其他答案所建议的那样使用tee,但是在您的情况下,它仍然会将整个列表存储在内存中,因此它将得到与选项2相同的结果和类似的性能。

如果你的生成器在某种意义上是纯的,它的输出只依赖于传递的参数和步长,并且你希望生成的生成器是可重新启动的,这里有一个排序代码片段可能很方便:

import copy

def generator(i):
    yield from range(i)

g = generator(10)
print(list(g))
print(list(g))

class GeneratorRestartHandler(object):
    def __init__(self, gen_func, argv, kwargv):
        self.gen_func = gen_func
        self.argv = copy.copy(argv)
        self.kwargv = copy.copy(kwargv)
        self.local_copy = iter(self)

    def __iter__(self):
        return self.gen_func(*self.argv, **self.kwargv)

    def __next__(self):
        return next(self.local_copy)

def restartable(g_func: callable) -> callable:
    def tmp(*argv, **kwargv):
        return GeneratorRestartHandler(g_func, argv, kwargv)

    return tmp

@restartable
def generator2(i):
    yield from range(i)

g = generator2(10)
print(next(g))
print(list(g))
print(list(g))
print(next(g))

输出:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[]
0
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
1

它可以通过code对象来实现。下面是一个例子。

code_str="y=(a for a in [1,2,3,4])"
code1=compile(code_str,'<string>','single')
exec(code1)
for i in y: print i

1 2 3 4

for i in y: print i


exec(code1)
for i in y: print i

1 2 3 4