如何获取列表项中的元素数?
items = ["apple", "orange", "banana"]
# There are 3 items.
如何获取列表项中的元素数?
items = ["apple", "orange", "banana"]
# There are 3 items.
当前回答
有三种方法可以找到列表中元素的长度。我将在这里比较这三种方法与性能分析。
方法1:使用len()
items = []
items.append("apple")
items.append("orange")
items.append("banana")
print(len(items))
输出:
3
方法2:使用Naive Counter方法
items = []
items.append("apple")
items.append("orange")
items.append("banana")
counter = 0
for i in items:
counter = counter + 1
print(counter)
输出:
3
方法3:使用length_hint()
items = []
items.append("apple")
items.append("orange")
items.append("banana")
from operator import length_hint
list_len_hint = length_hint(items)
print(list_len_hint)
输出:
3
性能分析–Naive vs len()vs length_hint()
注意:为了进行比较,我将输入列表更改为一个大集合,该集合可以提供大量的时间差来比较方法。
items = list(range(100000000))
# Performance Analysis
from operator import length_hint
import time
# Finding length of list
# using loop
# Initializing counter
start_time_naive = time.time()
counter = 0
for i in items:
# incrementing counter
counter = counter + 1
end_time_naive = str(time.time() - start_time_naive)
# Finding length of list
# using len()
start_time_len = time.time()
list_len = len(items)
end_time_len = str(time.time() - start_time_len)
# Finding length of list
# using length_hint()
start_time_hint = time.time()
list_len_hint = length_hint(items)
end_time_hint = str(time.time() - start_time_hint)
# Printing Times of each
print("Time taken using naive method is : " + end_time_naive)
print("Time taken using len() is : " + end_time_len)
print("Time taken using length_hint() is : " + end_time_hint)
输出:
Time taken using naive method is : 7.536813735961914
Time taken using len() is : 0.0
Time taken using length_hint() is : 0.0
结论
可以清楚地看到,与其他两种方法相比,naive所花费的时间非常长,因此len()和length_hint()是最好的选择。
其他回答
有三种方法可以找到列表中元素的长度。我将在这里比较这三种方法与性能分析。
方法1:使用len()
items = []
items.append("apple")
items.append("orange")
items.append("banana")
print(len(items))
输出:
3
方法2:使用Naive Counter方法
items = []
items.append("apple")
items.append("orange")
items.append("banana")
counter = 0
for i in items:
counter = counter + 1
print(counter)
输出:
3
方法3:使用length_hint()
items = []
items.append("apple")
items.append("orange")
items.append("banana")
from operator import length_hint
list_len_hint = length_hint(items)
print(list_len_hint)
输出:
3
性能分析–Naive vs len()vs length_hint()
注意:为了进行比较,我将输入列表更改为一个大集合,该集合可以提供大量的时间差来比较方法。
items = list(range(100000000))
# Performance Analysis
from operator import length_hint
import time
# Finding length of list
# using loop
# Initializing counter
start_time_naive = time.time()
counter = 0
for i in items:
# incrementing counter
counter = counter + 1
end_time_naive = str(time.time() - start_time_naive)
# Finding length of list
# using len()
start_time_len = time.time()
list_len = len(items)
end_time_len = str(time.time() - start_time_len)
# Finding length of list
# using length_hint()
start_time_hint = time.time()
list_len_hint = length_hint(items)
end_time_hint = str(time.time() - start_time_hint)
# Printing Times of each
print("Time taken using naive method is : " + end_time_naive)
print("Time taken using len() is : " + end_time_len)
print("Time taken using length_hint() is : " + end_time_hint)
输出:
Time taken using naive method is : 7.536813735961914
Time taken using len() is : 0.0
Time taken using length_hint() is : 0.0
结论
可以清楚地看到,与其他两种方法相比,naive所花费的时间非常长,因此len()和length_hint()是最好的选择。
按照前面给出的示例回答您的问题:
items = []
items.append("apple")
items.append("orange")
items.append("banana")
print items.__len__()
len()函数可以用于Python中的几种不同类型——内置类型和库类型。例如:
>>> len([1, 2, 3])
3
为了完整性(主要是教育性的),可以不使用len()函数。我不会容忍这是一个很好的选择,不要在巨蟒身上这样编程,但它有助于学习算法。
def count(list): # list is an iterable object but no type checking here!
item_count = 0
for item in list:
item_count += 1
return item_count
count([1,2,3,4,5])
(列表对象必须是可迭代的,由节中的for..暗示。)
对于新程序员来说,这里的教训是:如果不在某个时间点对项目进行计数,就无法获得列表中的项目数。问题变成了:什么时候是计算它们的好时机?例如,高性能代码,如套接字的connect系统调用(用C编写)connect(int sockfd,const struct sockaddr*addr,socklen_t addrlen);,不计算元素的长度(将该责任赋予调用代码)。请注意,地址的长度是为了保存首先计算长度的步骤而传递的?另一种选择是:在计算上,当您将项目添加到传递的对象中时,跟踪项目的数量可能是有意义的。请注意,这会占用更多的内存空间。看看Naftuli Kay的回答。
跟踪长度以提高性能同时占用更多内存空间的示例。注意,我从不使用len()函数,因为长度是跟踪的:
class MyList(object):
def __init__(self):
self._data = []
self.length = 0 # length tracker that takes up memory but makes length op O(1) time
# the implicit iterator in a list class
def __iter__(self):
for elem in self._data:
yield elem
def add(self, elem):
self._data.append(elem)
self.length += 1
def remove(self, elem):
self._data.remove(elem)
self.length -= 1
mylist = MyList()
mylist.add(1)
mylist.add(2)
mylist.add(3)
print(mylist.length) # 3
mylist.remove(3)
print(mylist.length) # 2
简单:使用len(list)或list__len__()
就len()的实际工作方式而言,这是它的C实现:
static PyObject *
builtin_len(PyObject *module, PyObject *obj)
/*[clinic end generated code: output=fa7a270d314dfb6c input=bc55598da9e9c9b5]*/
{
Py_ssize_t res;
res = PyObject_Size(obj);
if (res < 0) {
assert(PyErr_Occurred());
return NULL;
}
return PyLong_FromSsize_t(res);
}
Py_size_t是对象可以具有的最大长度。PyObject_Size()是一个返回对象大小的函数。如果无法确定对象的大小,则返回-1。在这种情况下,将执行以下代码块:
if (res < 0) {
assert(PyErr_Occurred());
return NULL;
}
结果引发了异常。否则,将执行此代码块:
return PyLong_FromSsize_t(res);
res是一个C整数,它被转换为Python int(在C代码中仍然称为“Long”,因为Python 2有两种类型用于存储整数)并返回。