我试图将一个范围的数字转换为另一个,保持比率。数学不是我的强项。

I have an image file where point values may range from -16000.00 to 16000.00 though the typical range may be much less. What I want to do is compress these values into the integer range 0-100, where 0 is the value of the smallest point, and 100 is the value of the largest. All points in between should keep a relative ratio even though some precision is being lost I'd like to do this in python but even a general algorithm should suffice. I'd prefer an algorithm where the min/max or either range can be adjusted (ie, the second range could be -50 to 800 instead of 0 to 100).


当前回答

PHP的港口

发现PenguinTD的解决方案很有用,所以我将其移植到PHP。帮助你自己!

/**
* =====================================
*              Remap Range            
* =====================================
* - Convert one range to another. (including value)
*
* @param    int $intValue   The value in the old range you wish to convert
* @param    int $oMin       The minimum of the old range
* @param    int $oMax       The maximum of the old range
* @param    int $nMin       The minimum of the new range
* @param    int $nMax       The maximum of the new range
*
* @return   float $fResult  The old value converted to the new range
*/
function remapRange($intValue, $oMin, $oMax, $nMin, $nMax) {
    // Range check
    if ($oMin == $oMax) {
        echo 'Warning: Zero input range';
        return false;
    }

    if ($nMin == $nMax) {
        echo 'Warning: Zero output range';
        return false;
    }

    // Check reversed input range
    $bReverseInput = false;
    $intOldMin = min($oMin, $oMax);
    $intOldMax = max($oMin, $oMax);
    if ($intOldMin != $oMin) {
        $bReverseInput = true;
    }

    // Check reversed output range
    $bReverseOutput = false;
    $intNewMin = min($nMin, $nMax);
    $intNewMax = max($nMin, $nMax);
    if ($intNewMin != $nMin) {
        $bReverseOutput = true;
    }

    $fRatio = ($intValue - $intOldMin) * ($intNewMax - $intNewMin) / ($intOldMax - $intOldMin);
    if ($bReverseInput) {
        $fRatio = ($intOldMax - $intValue) * ($intNewMax - $intNewMin) / ($intOldMax - $intOldMin);
    }

    $fResult = $fRatio + $intNewMin;
    if ($bReverseOutput) {
        $fResult = $intNewMax - $fRatio;
    }

    return $fResult;
}

其他回答

下面是一些简单的Python函数,便于复制和粘贴,包括一个扩展整个列表的函数。

def scale_number(unscaled, to_min, to_max, from_min, from_max):
    return (to_max-to_min)*(unscaled-from_min)/(from_max-from_min)+to_min

def scale_list(l, to_min, to_max):
    return [scale_number(i, to_min, to_max, min(l), max(l)) for i in l]

可以这样使用:

scale_list([1,3,4,5], 0, 100)

[0.0, 50.0, 75.0, 100.0]

在我的例子中,我想缩放一条对数曲线,像这样:

scale_list([math.log(i+1) for i in range(5)], 0, 50)

[0.0, 21.533827903669653, 34.130309724299266, 43.06765580733931, 50.0]

这是一个简单的线性变换。

new_value = ( (old_value - old_min) / (old_max - old_min) ) * (new_max - new_min) + new_min

因此,将10000在-16000到16000的范围内转换为0到100的新范围会得到:

old_value = 10000
old_min = -16000
old_max = 16000
new_min = 0
new_max = 100

new_value = ( ( 10000 - -16000 ) / (16000 - -16000) ) * (100 - 0) + 0
          = 81.25

我个人使用支持泛型的helper类(Swift 3,4)。x兼容)

struct Rescale<Type : BinaryFloatingPoint> {
    typealias RescaleDomain = (lowerBound: Type, upperBound: Type)

    var fromDomain: RescaleDomain
    var toDomain: RescaleDomain

    init(from: RescaleDomain, to: RescaleDomain) {
        self.fromDomain = from
        self.toDomain = to
    }

    func interpolate(_ x: Type ) -> Type {
        return self.toDomain.lowerBound * (1 - x) + self.toDomain.upperBound * x;
    }

    func uninterpolate(_ x: Type) -> Type {
        let b = (self.fromDomain.upperBound - self.fromDomain.lowerBound) != 0 ? self.fromDomain.upperBound - self.fromDomain.lowerBound : 1 / self.fromDomain.upperBound;
        return (x - self.fromDomain.lowerBound) / b
    }

    func rescale(_ x: Type )  -> Type {
        return interpolate( uninterpolate(x) )
    }
}

Ex:

   let rescaler = Rescale<Float>(from: (-1, 1), to: (0, 100))
    
   print(rescaler.rescale(0)) // OUTPUT: 50
NewValue = (((OldValue - OldMin) * (NewMax - NewMin)) / (OldMax - OldMin)) + NewMin

或者更容易读懂:

OldRange = (OldMax - OldMin)  
NewRange = (NewMax - NewMin)  
NewValue = (((OldValue - OldMin) * NewRange) / OldRange) + NewMin

或者如果你想保护旧范围为0的情况(OldMin = OldMax):

OldRange = (OldMax - OldMin)
if (OldRange == 0)
    NewValue = NewMin
else
{
    NewRange = (NewMax - NewMin)  
    NewValue = (((OldValue - OldMin) * NewRange) / OldRange) + NewMin
}

注意,在这种情况下,我们被迫任意选择一个可能的新范围值。根据上下文,明智的选择可能是:NewMin(见示例),NewMax或(NewMin + NewMax) / 2

使用Numpy和interp函数,你可以将你的值从旧范围转换为新范围:

>>> import numpy as np
>>> np.interp(0, [-16000,16000], [0,100])
50.0

你也可以尝试映射一个值列表:

>>> np.interp([-16000,0,12000] ,[-16000,16000], [0,100])
array([ 0. , 50. , 87.5])