我试图将一个范围的数字转换为另一个,保持比率。数学不是我的强项。

I have an image file where point values may range from -16000.00 to 16000.00 though the typical range may be much less. What I want to do is compress these values into the integer range 0-100, where 0 is the value of the smallest point, and 100 is the value of the largest. All points in between should keep a relative ratio even though some precision is being lost I'd like to do this in python but even a general algorithm should suffice. I'd prefer an algorithm where the min/max or either range can be adjusted (ie, the second range could be -50 to 800 instead of 0 to 100).


当前回答

下面是一些简单的Python函数,便于复制和粘贴,包括一个扩展整个列表的函数。

def scale_number(unscaled, to_min, to_max, from_min, from_max):
    return (to_max-to_min)*(unscaled-from_min)/(from_max-from_min)+to_min

def scale_list(l, to_min, to_max):
    return [scale_number(i, to_min, to_max, min(l), max(l)) for i in l]

可以这样使用:

scale_list([1,3,4,5], 0, 100)

[0.0, 50.0, 75.0, 100.0]

在我的例子中,我想缩放一条对数曲线,像这样:

scale_list([math.log(i+1) for i in range(5)], 0, 50)

[0.0, 21.533827903669653, 34.130309724299266, 43.06765580733931, 50.0]

其他回答

在由PenguinTD提供的清单中,我不明白为什么范围是颠倒的,它不需要颠倒范围就能工作。线性范围转换基于线性方程Y=Xm+n,其中m和n是从给定的范围推导出来的。与其将范围称为min和max,不如将它们称为1和2。所以公式是:

Y = (((X - x1) * (y2 - y1)) / (x2 - x1)) + y1

当X=x1时Y=y1,当X=x2时Y=y2。X1, x2, y1和y2可以取任意正值或负值。在宏中定义表达式使其更有用,它可以与任何参数名称一起使用。

#define RangeConv(X, x1, x2, y1, y2) (((float)((X - x1) * (y2 - y1)) / (x2 - x1)) + y1)

在所有实参都是整数值的情况下,浮点强制转换将确保浮点除法。 根据应用程序的不同,可能不需要检查x1=x2和y1==y2的范围。

实际上,在某些情况下,上述答案会失效。 如错误的输入值,错误的输入范围,负输入/输出范围。

def remap( x, oMin, oMax, nMin, nMax ):

    #range check
    if oMin == oMax:
        print "Warning: Zero input range"
        return None

    if nMin == nMax:
        print "Warning: Zero output range"
        return None

    #check reversed input range
    reverseInput = False
    oldMin = min( oMin, oMax )
    oldMax = max( oMin, oMax )
    if not oldMin == oMin:
        reverseInput = True

    #check reversed output range
    reverseOutput = False   
    newMin = min( nMin, nMax )
    newMax = max( nMin, nMax )
    if not newMin == nMin :
        reverseOutput = True

    portion = (x-oldMin)*(newMax-newMin)/(oldMax-oldMin)
    if reverseInput:
        portion = (oldMax-x)*(newMax-newMin)/(oldMax-oldMin)

    result = portion + newMin
    if reverseOutput:
        result = newMax - portion

    return result

#test cases
print remap( 25.0, 0.0, 100.0, 1.0, -1.0 ), "==", 0.5
print remap( 25.0, 100.0, -100.0, -1.0, 1.0 ), "==", -0.25
print remap( -125.0, -100.0, -200.0, 1.0, -1.0 ), "==", 0.5
print remap( -125.0, -200.0, -100.0, -1.0, 1.0 ), "==", 0.5
#even when value is out of bound
print remap( -20.0, 0.0, 100.0, 0.0, 1.0 ), "==", -0.2

我个人使用支持泛型的helper类(Swift 3,4)。x兼容)

struct Rescale<Type : BinaryFloatingPoint> {
    typealias RescaleDomain = (lowerBound: Type, upperBound: Type)

    var fromDomain: RescaleDomain
    var toDomain: RescaleDomain

    init(from: RescaleDomain, to: RescaleDomain) {
        self.fromDomain = from
        self.toDomain = to
    }

    func interpolate(_ x: Type ) -> Type {
        return self.toDomain.lowerBound * (1 - x) + self.toDomain.upperBound * x;
    }

    func uninterpolate(_ x: Type) -> Type {
        let b = (self.fromDomain.upperBound - self.fromDomain.lowerBound) != 0 ? self.fromDomain.upperBound - self.fromDomain.lowerBound : 1 / self.fromDomain.upperBound;
        return (x - self.fromDomain.lowerBound) / b
    }

    func rescale(_ x: Type )  -> Type {
        return interpolate( uninterpolate(x) )
    }
}

Ex:

   let rescaler = Rescale<Float>(from: (-1, 1), to: (0, 100))
    
   print(rescaler.rescale(0)) // OUTPUT: 50

增加了KOTLIN版本的数学解释

假设我们有一个介于(OMin, Omax)之间的刻度,我们在这个范围内有一个值X

我们要把它转换成比例(NMin, NMax)

我们知道X,我们需要找到Y,比值必须相等:

 => (Y-NMin)/(NMax-NMin) = (X-OMin)/(OMax-OMin)  
      
 =>  (Y-NMin)/NewRange = (X-OMin)/OldRange 

 =>   Y = ((X-OMin)*NewRange)/oldRange)+NMin  Answer
   

从实用主义的角度来看,我们可以这样写这个问句:

 private fun  convertScale(oldValueToConvert:Int): Float {
       // Old Scale 50-100
       val oldScaleMin = 50
       val oldScaleMax = 100
       val oldScaleRange= (oldScaleMax - oldScaleMin)

       //new Scale 0-1
       val newScaleMin = 0.0f
       val newScaleMax = 1.0f
       val newScaleRange=  (newScaleMax - newScaleMin)
     
       return ((oldValueToConvert - oldScaleMin)* newScaleRange/ oldScaleRange) + newScaleMin
    }

JAVA

/**
     * 
     * @param x
     * @param inMin
     * @param inMax
     * @param outMin
     * @param outMax
     * @return
     */
        private long normalize(long x, long inMin, long inMax, long outMin, long outMax) {
          long outRange = outMax - outMin;
          long inRange  = inMax - inMin;
          return (x - inMin) *outRange / inRange + outMin;
        }

用法:

float brightness = normalize(progress, 0, 10, 0,255);

列出理解一行的解决方案

color_array_new = [int((((x - min(node_sizes)) * 99) / (max(node_sizes) - min(node_sizes))) + 1) for x in node_sizes]

完整版

def colour_specter(waste_amount):
color_array = []
OldRange = max(waste_amount) - min(waste_amount)
NewRange = 99
for number_value in waste_amount:
    NewValue = int((((number_value - min(waste_amount)) * NewRange) / OldRange) + 1)
    color_array.append(NewValue)
print(color_array)
return color_array