我试图将一个范围的数字转换为另一个,保持比率。数学不是我的强项。
I have an image file where point values may range from -16000.00 to 16000.00 though the typical range may be much less. What I want to do is compress these values into the integer range 0-100, where 0 is the value of the smallest point, and 100 is the value of the largest. All points in between should keep a relative ratio even though some precision is being lost I'd like to do this in python but even a general algorithm should suffice. I'd prefer an algorithm where the min/max or either range can be adjusted (ie, the second range could be -50 to 800 instead of 0 to 100).
这个例子将歌曲的当前位置转换为20 - 40的角度范围。
/// <summary>
/// This test converts Current songtime to an angle in a range.
/// </summary>
[Fact]
public void ConvertRangeTests()
{
//Convert a songs time to an angle of a range 20 - 40
var result = ConvertAndGetCurrentValueOfRange(
TimeSpan.Zero, TimeSpan.FromMinutes(5.4),
20, 40,
2.7
);
Assert.True(result == 30);
}
/// <summary>
/// Gets the current value from the mixValue maxValue range.
/// </summary>
/// <param name="startTime">Start of the song</param>
/// <param name="duration"></param>
/// <param name="minValue"></param>
/// <param name="maxValue"></param>
/// <param name="value">Current time</param>
/// <returns></returns>
public double ConvertAndGetCurrentValueOfRange(
TimeSpan startTime,
TimeSpan duration,
double minValue,
double maxValue,
double value)
{
var timeRange = duration - startTime;
var newRange = maxValue - minValue;
var ratio = newRange / timeRange.TotalMinutes;
var newValue = value * ratio;
var currentValue= newValue + minValue;
return currentValue;
}
NewValue = (((OldValue - OldMin) * (NewMax - NewMin)) / (OldMax - OldMin)) + NewMin
或者更容易读懂:
OldRange = (OldMax - OldMin)
NewRange = (NewMax - NewMin)
NewValue = (((OldValue - OldMin) * NewRange) / OldRange) + NewMin
或者如果你想保护旧范围为0的情况(OldMin = OldMax):
OldRange = (OldMax - OldMin)
if (OldRange == 0)
NewValue = NewMin
else
{
NewRange = (NewMax - NewMin)
NewValue = (((OldValue - OldMin) * NewRange) / OldRange) + NewMin
}
注意,在这种情况下,我们被迫任意选择一个可能的新范围值。根据上下文,明智的选择可能是:NewMin(见示例),NewMax或(NewMin + NewMax) / 2
增加了KOTLIN版本的数学解释
假设我们有一个介于(OMin, Omax)之间的刻度,我们在这个范围内有一个值X
我们要把它转换成比例(NMin, NMax)
我们知道X,我们需要找到Y,比值必须相等:
=> (Y-NMin)/(NMax-NMin) = (X-OMin)/(OMax-OMin)
=> (Y-NMin)/NewRange = (X-OMin)/OldRange
=> Y = ((X-OMin)*NewRange)/oldRange)+NMin Answer
从实用主义的角度来看,我们可以这样写这个问句:
private fun convertScale(oldValueToConvert:Int): Float {
// Old Scale 50-100
val oldScaleMin = 50
val oldScaleMax = 100
val oldScaleRange= (oldScaleMax - oldScaleMin)
//new Scale 0-1
val newScaleMin = 0.0f
val newScaleMax = 1.0f
val newScaleRange= (newScaleMax - newScaleMin)
return ((oldValueToConvert - oldScaleMin)* newScaleRange/ oldScaleRange) + newScaleMin
}
JAVA
/**
*
* @param x
* @param inMin
* @param inMax
* @param outMin
* @param outMax
* @return
*/
private long normalize(long x, long inMin, long inMax, long outMin, long outMax) {
long outRange = outMax - outMin;
long inRange = inMax - inMin;
return (x - inMin) *outRange / inRange + outMin;
}
用法:
float brightness = normalize(progress, 0, 10, 0,255);