我试图将一个范围的数字转换为另一个,保持比率。数学不是我的强项。

I have an image file where point values may range from -16000.00 to 16000.00 though the typical range may be much less. What I want to do is compress these values into the integer range 0-100, where 0 is the value of the smallest point, and 100 is the value of the largest. All points in between should keep a relative ratio even though some precision is being lost I'd like to do this in python but even a general algorithm should suffice. I'd prefer an algorithm where the min/max or either range can be adjusted (ie, the second range could be -50 to 800 instead of 0 to 100).


当前回答

这个例子将歌曲的当前位置转换为20 - 40的角度范围。

    /// <summary>
    /// This test converts Current songtime to an angle in a range. 
    /// </summary>
    [Fact]
    public void ConvertRangeTests()
    {            
       //Convert a songs time to an angle of a range 20 - 40
        var result = ConvertAndGetCurrentValueOfRange(
            TimeSpan.Zero, TimeSpan.FromMinutes(5.4),
            20, 40, 
            2.7
            );

        Assert.True(result == 30);
    }

    /// <summary>
    /// Gets the current value from the mixValue maxValue range.        
    /// </summary>
    /// <param name="startTime">Start of the song</param>
    /// <param name="duration"></param>
    /// <param name="minValue"></param>
    /// <param name="maxValue"></param>
    /// <param name="value">Current time</param>
    /// <returns></returns>
    public double ConvertAndGetCurrentValueOfRange(
                TimeSpan startTime,
                TimeSpan duration,
                double minValue,
                double maxValue,
                double value)
    {
        var timeRange = duration - startTime;
        var newRange = maxValue - minValue;
        var ratio = newRange / timeRange.TotalMinutes;
        var newValue = value * ratio;
        var currentValue= newValue + minValue;
        return currentValue;
    }

其他回答

捷径/简化方案

 NewRange/OldRange = Handy multiplicand or HM
 Convert OldValue in OldRange to NewValue in NewRange = 
 (OldValue - OldMin x HM) + NewMin

韦恩

使用Numpy和interp函数,你可以将你的值从旧范围转换为新范围:

>>> import numpy as np
>>> np.interp(0, [-16000,16000], [0,100])
50.0

你也可以尝试映射一个值列表:

>>> np.interp([-16000,0,12000] ,[-16000,16000], [0,100])
array([ 0. , 50. , 87.5])
NewValue = (((OldValue - OldMin) * (NewMax - NewMin)) / (OldMax - OldMin)) + NewMin

或者更容易读懂:

OldRange = (OldMax - OldMin)  
NewRange = (NewMax - NewMin)  
NewValue = (((OldValue - OldMin) * NewRange) / OldRange) + NewMin

或者如果你想保护旧范围为0的情况(OldMin = OldMax):

OldRange = (OldMax - OldMin)
if (OldRange == 0)
    NewValue = NewMin
else
{
    NewRange = (NewMax - NewMin)  
    NewValue = (((OldValue - OldMin) * NewRange) / OldRange) + NewMin
}

注意,在这种情况下,我们被迫任意选择一个可能的新范围值。根据上下文,明智的选择可能是:NewMin(见示例),NewMax或(NewMin + NewMax) / 2

我写了一个函数用R来做这个,方法和上面一样,但是我需要在R中做很多次,所以我想分享一下,以防它对任何人有帮助。

convertRange <- function(
  oldValue,
  oldRange = c(-16000.00, 16000.00), 
  newRange = c(0, 100),
  returnInt = TRUE # the poster asked for an integer, so this is an option
){
  oldMin <- oldRange[1]
  oldMax <- oldRange[2]
  newMin <- newRange[1]
  newMax <- newRange[2]
  newValue = (((oldValue - oldMin)* (newMax - newMin)) / (oldMax - oldMin)) + newMin
  
  if(returnInt){
   return(round(newValue))
  } else {
   return(newValue)
  }
}

有一种情况,当您检查的所有值都相同时,@jerryjvl的代码将返回NaN。

if (OldMin != OldMax && NewMin != NewMax):
    return (((OldValue - OldMin) * (NewMax - NewMin)) / (OldMax - OldMin)) + NewMin
else:
    return (NewMax + NewMin) / 2