为什么下面的代码在Python中会出现意外的行为?

>>> a = 256
>>> b = 256
>>> a is b
True           # This is an expected result
>>> a = 257
>>> b = 257
>>> a is b
False          # What happened here? Why is this False?
>>> 257 is 257
True           # Yet the literal numbers compare properly

我使用的是Python 2.5.2。尝试一些不同版本的Python,似乎Python 2.3.3在99到100之间显示了上述行为。

基于以上,我可以假设Python是内部实现的,这样“小”整数与大整数以不同的方式存储,并且is操作符可以区分两者。为什么会有漏洞的抽象?有什么更好的方法来比较两个任意物体来判断它们是否相同当我事先不知道它们是否是数字时?


当前回答

我认为你的假设是正确的。实验id(对象的身份):

In [1]: id(255)
Out[1]: 146349024

In [2]: id(255)
Out[2]: 146349024

In [3]: id(257)
Out[3]: 146802752

In [4]: id(257)
Out[4]: 148993740

In [5]: a=255

In [6]: b=255

In [7]: c=257

In [8]: d=257

In [9]: id(a), id(b), id(c), id(d)
Out[9]: (146349024, 146349024, 146783024, 146804020)

似乎数字<= 255被视为字面量,以上任何数字都被区别对待!

其他回答

看看这个:

>>> a = 256
>>> b = 256
>>> id(a)
9987148
>>> id(b)
9987148
>>> a = 257
>>> b = 257
>>> id(a)
11662816
>>> id(b)
11662828

以下是我在“普通整数对象”的文档中找到的:

当前的实现为-5到256之间的所有整数保留了一个整数对象数组。当你在这个范围内创建一个int型时,你实际上只是得到了一个对现有对象的引用。

我认为你的假设是正确的。实验id(对象的身份):

In [1]: id(255)
Out[1]: 146349024

In [2]: id(255)
Out[2]: 146349024

In [3]: id(257)
Out[3]: 146802752

In [4]: id(257)
Out[4]: 148993740

In [5]: a=255

In [6]: b=255

In [7]: c=257

In [8]: d=257

In [9]: id(a), id(b), id(c), id(d)
Out[9]: (146349024, 146349024, 146783024, 146804020)

似乎数字<= 255被视为字面量,以上任何数字都被区别对待!

还有一个问题,在现有的任何答案中都没有指出。Python允许合并任何两个不可变的值,并且预先创建的小int值并不是发生这种情况的唯一方式。Python实现从来不保证这样做,但它们都不仅仅是对小int型进行这样做。


首先,还有一些其他预先创建的值,比如空元组、str和bytes,以及一些短字符串(在CPython 3.6中,它是256个单字符Latin-1字符串)。例如:

>>> a = ()
>>> b = ()
>>> a is b
True

但是,即使非预先创建的值也可以是相同的。考虑以下例子:

>>> c = 257
>>> d = 257
>>> c is d
False
>>> e, f = 258, 258
>>> e is f
True

这并不局限于int值:

>>> g, h = 42.23e100, 42.23e100
>>> g is h
True

显然,CPython没有为42.23e100提供预先创建的浮点值。那么,这里发生了什么?

CPython编译器会在同一个编译单元中合并一些已知不可变类型的常量值,比如int、float、str、bytes。对于一个模块,整个模块是一个编译单元,但在交互式解释器中,每条语句都是一个单独的编译单元。因为c和d是在单独的语句中定义的,所以它们的值不会合并。由于e和f在同一个语句中定义,它们的值被合并。


您可以通过分解字节码来了解发生了什么。试着定义一个函数执行e, f = 128, 128然后调用dis。dis,你会看到只有一个常量值(128,128)

>>> def f(): i, j = 258, 258
>>> dis.dis(f)
  1           0 LOAD_CONST               2 ((128, 128))
              2 UNPACK_SEQUENCE          2
              4 STORE_FAST               0 (i)
              6 STORE_FAST               1 (j)
              8 LOAD_CONST               0 (None)
             10 RETURN_VALUE
>>> f.__code__.co_consts
(None, 128, (128, 128))
>>> id(f.__code__.co_consts[1], f.__code__.co_consts[2][0], f.__code__.co_consts[2][1])
4305296480, 4305296480, 4305296480

你可能会注意到编译器将128作为一个常量存储,尽管字节码实际上并没有使用它,这让你知道CPython编译器所做的优化是多么少。这意味着(非空的)元组实际上不会被合并:

>>> k, l = (1, 2), (1, 2)
>>> k is l
False

把它放到一个函数中,dis它,然后看看co_consts -有一个1和一个2,两个(1,2)元组共享相同的1和2,但不相同,还有一个((1,2),(1,2))元组,它有两个不同的相等元组。


CPython还做了一项优化:字符串实习。与编译器常量折叠不同,这并不局限于源代码字面量:

>>> m = 'abc'
>>> n = 'abc'
>>> m is n
True

另一方面,它仅限于str类型,以及内部存储类型为"ascii compact"、"compact"或"legacy ready"的字符串,并且在许多情况下只有"ascii compact"会被捕获。


无论如何,关于什么值必须是、可能是或不能是不同的规则在不同的实现之间、在相同实现的版本之间、甚至在相同实现的同一副本上运行相同代码之间都是不同的。

为了好玩,学习特定Python的规则是值得的。但是在代码中依赖它们是不值得的。唯一安全的规则是:

不要编写假定两个相同但单独创建的不可变值相同的代码(不要使用x is y,使用x == y) 不要编写假定两个相同但分别创建的不可变值是不同的代码(不要使用x不是y,使用x != y)

或者,换句话说,唯一的用途是测试文档化的单例对象(如None)或只在代码中的一个地方创建的单例对象(如_sentinel = object()习惯用法)。

正如你可以检入源文件inobject .c一样,Python缓存小整数以提高效率。每次创建对小整数的引用时,引用的都是缓存的小整数,而不是新对象。257不是一个小整数,所以它是作为一个不同的对象计算的。

为了这个目的,最好使用==。

Python 3.8新增功能:Python行为的变化:

编译器现在在标识检查(is和 Is not)用于某些类型的字面量(例如字符串,int)。 在CPython中,这些通常可以意外地工作,但不能保证 该警告建议用户使用相等性测试(== 和!=)代替。