如何在C中四舍五入浮点值(如37.777779)到小数点后两位(37.78)?
当前回答
...或者你也可以采用传统的方式,不需要任何库:
float a = 37.777779;
int b = a; // b = 37
float c = a - b; // c = 0.777779
c *= 100; // c = 77.777863
int d = c; // d = 77;
a = b + d / (float)100; // a = 37.770000;
当然,如果你想从数字中去除额外的信息。
其他回答
printf("%.2f", 37.777779);
如果你想写入C-string:
char number[24]; // dummy size, you should take care of the size!
sprintf(number, "%.2f", 37.777779);
...或者你也可以采用传统的方式,不需要任何库:
float a = 37.777779;
int b = a; // b = 37
float c = a - b; // c = 0.777779
c *= 100; // c = 77.777863
int d = c; // d = 77;
a = b + d / (float)100; // a = 37.770000;
当然,如果你想从数字中去除额外的信息。
这个宏用于浮点数四舍五入。 把它添加到你的头文件中
#define ROUNDF(f, c) (((float)((int)((f) * (c))) / (c)))
这里有一个例子:
float x = ROUNDF(3.141592, 100)
X = 3.14:)
这个怎么样:
float value = 37.777779;
float rounded = ((int)(value * 100 + .5) / 100.0);
使用float roundf(float x)。
舍入函数将其参数舍入为浮点格式中最接近的整数值,无论当前舍入方向如何,舍入距离为零的中间情况。C11dr§7.12.9.5
#include <math.h>
float y = roundf(x * 100.0f) / 100.0f;
根据你的浮点数实现,看起来是一半的数字并不是。因为浮点数通常是面向2进制的。此外,在所有“中途”情况下,精确舍入到最接近0.01是最具挑战性的。
void r100(const char *s) {
float x, y;
sscanf(s, "%f", &x);
y = round(x*100.0)/100.0;
printf("%6s %.12e %.12e\n", s, x, y);
}
int main(void) {
r100("1.115");
r100("1.125");
r100("1.135");
return 0;
}
1.115 1.115000009537e+00 1.120000004768e+00
1.125 1.125000000000e+00 1.129999995232e+00
1.135 1.134999990463e+00 1.139999985695e+00
虽然“1.115”是介于1.11和1.12之间的“中间值”,但当转换为float时,其值为1.115000009537…并且不再是“半程”,而是更接近1.12,并四舍五入到最接近的浮动1.120000004768…
“1.125”是介于1.12和1.13之间的“中间值”,当转换为float时,值正好是1.125,是“中间值”。由于与偶数规则的关系,它四舍五入到1.13,并四舍五入到最接近的浮点数1.129999995232…
虽然“1.135”是介于1.13和1.14之间的“中间值”,但当转换为float时,其值为1.134999990463…并且不再是“半途”,而是更接近1.13,并舍入到最接近的浮动1.129999995232…
如果使用代码
y = roundf(x*100.0f)/100.0f;
虽然“1.135”是介于1.13和1.14之间的“中间值”,但当转换为float时,其值为1.134999990463…并且不再是“半路”,而是更接近1.13,但错误地舍入到浮动1.139999985695…由于浮点数和双精度数的精度更有限。这个不正确的值可能被视为正确的,这取决于编码目标。