假设我有一个带有一些nan的数据框架:

>>> import pandas as pd
>>> df = pd.DataFrame([[1, 2, 3], [4, None, None], [None, None, 9]])
>>> df
    0   1   2
0   1   2   3
1   4 NaN NaN
2 NaN NaN   9

我需要做的是将每个NaN替换为上面同一列中的第一个非NaN值。假定第一行永远不会包含NaN。对于前面的例子,结果是

   0  1  2
0  1  2  3
1  4  2  3
2  4  2  9

我可以一列一列地循环整个DataFrame,一个元素一个元素地循环,然后直接设置值,但是有没有一种简单的(最好是无循环的)方法来实现这一点呢?


当前回答

还有熊猫。插值,我认为它提供了更多的控制

import pandas as pd
df = pd.DataFrame([[1, 2, 3], [4, None, None], [None, None, 9]])

df=df.interpolate(method="pad",limit=None, downcast="infer") #downcast keeps dtype as int 
print(df)  

   0  1  2
0  1  2  3
1  4  2  3
2  4  2  9

其他回答

还有熊猫。插值,我认为它提供了更多的控制

import pandas as pd
df = pd.DataFrame([[1, 2, 3], [4, None, None], [None, None, 9]])

df=df.interpolate(method="pad",limit=None, downcast="infer") #downcast keeps dtype as int 
print(df)  

   0  1  2
0  1  2  3
1  4  2  3
2  4  2  9

只有一个列版本

用最后一个有效值填充NAN

df[column_name].fillna(method='ffill', inplace=True)

用下一个有效值填充NAN

df[column_name].fillna(method='backfill', inplace=True)

在我的例子中,我们有来自不同设备的时间序列,但有些设备在一段时间内无法发送任何值。所以我们应该为每个设备和时间段创建NA值,然后做fillna。

df = pd.DataFrame([["device1", 1, 'first val of device1'], ["device2", 2, 'first val of device2'], ["device3", 3, 'first val of device3']])
df.pivot(index=1, columns=0, values=2).fillna(method='ffill').unstack().reset_index(name='value')

结果:

        0   1   value
0   device1     1   first val of device1
1   device1     2   first val of device1
2   device1     3   first val of device1
3   device2     1   None
4   device2     2   first val of device2
5   device2     3   first val of device2
6   device3     1   None
7   device3     2   None
8   device3     3   first val of device3

公认的答案是完美的。我有一个相关但略有不同的情况,我必须在前面填写,但只能在小组中。如果有人有同样的需求,要知道fillna适用于DataFrameGroupBy对象。

>>> example = pd.DataFrame({'number':[0,1,2,nan,4,nan,6,7,8,9],'name':list('aaabbbcccc')})
>>> example
  name  number
0    a     0.0
1    a     1.0
2    a     2.0
3    b     NaN
4    b     4.0
5    b     NaN
6    c     6.0
7    c     7.0
8    c     8.0
9    c     9.0
>>> example.groupby('name')['number'].fillna(method='ffill') # fill in row 5 but not row 3
0    0.0
1    1.0
2    2.0
3    NaN
4    4.0
5    4.0
6    6.0
7    7.0
8    8.0
9    9.0
Name: number, dtype: float64

ffill现在有自己的方法pd. dataframe。ffill

df.ffill()

     0    1    2
0  1.0  2.0  3.0
1  4.0  2.0  3.0
2  4.0  2.0  9.0