我有一些Pandas dataframe共享相同的值尺度,但有不同的列和索引。当调用df.plot()时,我得到单独的plot图像。我真正想要的是把它们都放在同一个情节中,作为次要情节,但不幸的是,我没能想出一个解决方案,非常感谢一些帮助。


当前回答

import numpy as np
import pandas as pd
imoprt matplotlib.pyplot as plt

fig, ax = plt.subplots(2,2)
df = pd.DataFrame({'A':np.random.randint(1,100,10), 
                   'B': np.random.randint(100,1000,10),
                   'C':np.random.randint(100,200,10)})
for ax in ax.flatten():
    df.plot(ax =ax)  


其他回答

您可以使用matplotlib手动创建子图,然后使用ax关键字在特定的子图上绘制数据帧。例如,对于4个子图(2x2):

import matplotlib.pyplot as plt

fig, axes = plt.subplots(nrows=2, ncols=2)

df1.plot(ax=axes[0,0])
df2.plot(ax=axes[0,1])
...

这里的axes是一个包含不同子图轴的数组,您可以通过索引轴来访问其中一个。 如果你想要一个共享的x轴,那么你可以给plt.subplots提供sharex=True。

你可以看到eg。在证明joris答案的文件中。同样在文档中,你也可以在pandas plot函数中设置subplots=True和layout=(,):

df.plot(subplots=True, layout=(1,2))

你也可以使用fig.add_subplot()来获取子图网格参数,如221、222、223、224等。在这个ipython笔记本中可以看到pandas数据帧上的绘图(包括子绘图)的好例子。

您可以使用熟悉的Matplotlib样式调用图形和子图,但是您只需要使用plt.gca()指定当前轴。一个例子:

plt.figure(1)
plt.subplot(2,2,1)
df.A.plot() #no need to specify for first axis
plt.subplot(2,2,2)
df.B.plot(ax=plt.gca())
plt.subplot(2,2,3)
df.C.plot(ax=plt.gca())

等等……

下面是一个工作中的pandas子图示例,其中modes是数据框架的列名。

    dpi=200
    figure_size=(20, 10)
    fig, ax = plt.subplots(len(modes), 1, sharex="all", sharey="all", dpi=dpi)
    for i in range(len(modes)):
        ax[i] = pivot_df.loc[:, modes[i]].plot.bar(figsize=(figure_size[0], figure_size[1]*len(modes)),
                                                   ax=ax[i], title=modes[i], color=my_colors[i])
        ax[i].legend()
    fig.suptitle(name)

import numpy as np
import pandas as pd
imoprt matplotlib.pyplot as plt

fig, ax = plt.subplots(2,2)
df = pd.DataFrame({'A':np.random.randint(1,100,10), 
                   'B': np.random.randint(100,1000,10),
                   'C':np.random.randint(100,200,10)})
for ax in ax.flatten():
    df.plot(ax =ax)