我有一些Pandas dataframe共享相同的值尺度,但有不同的列和索引。当调用df.plot()时,我得到单独的plot图像。我真正想要的是把它们都放在同一个情节中,作为次要情节,但不幸的是,我没能想出一个解决方案,非常感谢一些帮助。


当前回答

你可以看到eg。在证明joris答案的文件中。同样在文档中,你也可以在pandas plot函数中设置subplots=True和layout=(,):

df.plot(subplots=True, layout=(1,2))

你也可以使用fig.add_subplot()来获取子图网格参数,如221、222、223、224等。在这个ipython笔记本中可以看到pandas数据帧上的绘图(包括子绘图)的好例子。

其他回答

你可以用这个:

fig = plt.figure()
ax = fig.add_subplot(221)
plt.plot(x,y)

ax = fig.add_subplot(222)
plt.plot(x,z)
...

plt.show()

您可以使用matplotlib手动创建子图,然后使用ax关键字在特定的子图上绘制数据帧。例如,对于4个子图(2x2):

import matplotlib.pyplot as plt

fig, axes = plt.subplots(nrows=2, ncols=2)

df1.plot(ax=axes[0,0])
df2.plot(ax=axes[0,1])
...

这里的axes是一个包含不同子图轴的数组,您可以通过索引轴来访问其中一个。 如果你想要一个共享的x轴,那么你可以给plt.subplots提供sharex=True。

您可以使用matplotlib绘制多个pandas数据帧的多个子图,只需简单地列出所有数据帧。然后使用for循环绘制子图。

工作代码:

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
# dataframe sample data
df1 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df2 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df3 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df4 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df5 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df6 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])

#define number of rows and columns for subplots
nrow=3
ncol=2

# make a list of all dataframes 
df_list = [df1 ,df2, df3, df4, df5, df6]
fig, axes = plt.subplots(nrow, ncol)

# plot counter
count=0
for r in range(nrow):
    for c in range(ncol):
        df_list[count].plot(ax=axes[r,c])
        count+=1

使用这段代码,可以在任何配置中绘制子图。您需要定义行数nrow和列数ncol。此外,您还需要制作您想要绘制的数据帧df_list列表。

import numpy as np
import pandas as pd
imoprt matplotlib.pyplot as plt

fig, ax = plt.subplots(2,2)
df = pd.DataFrame({'A':np.random.randint(1,100,10), 
                   'B': np.random.randint(100,1000,10),
                   'C':np.random.randint(100,200,10)})
for ax in ax.flatten():
    df.plot(ax =ax)  


下面是一个工作中的pandas子图示例,其中modes是数据框架的列名。

    dpi=200
    figure_size=(20, 10)
    fig, ax = plt.subplots(len(modes), 1, sharex="all", sharey="all", dpi=dpi)
    for i in range(len(modes)):
        ax[i] = pivot_df.loc[:, modes[i]].plot.bar(figsize=(figure_size[0], figure_size[1]*len(modes)),
                                                   ax=ax[i], title=modes[i], color=my_colors[i])
        ax[i].legend()
    fig.suptitle(name)