我从这样的输入数据开始
df1 = pandas.DataFrame( {
"Name" : ["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"] ,
"City" : ["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"] } )
印刷出来时是这样的:
City Name
0 Seattle Alice
1 Seattle Bob
2 Portland Mallory
3 Seattle Mallory
4 Seattle Bob
5 Portland Mallory
分组非常简单:
g1 = df1.groupby( [ "Name", "City"] ).count()
打印产生一个GroupBy对象:
City Name
Name City
Alice Seattle 1 1
Bob Seattle 2 2
Mallory Portland 2 2
Seattle 1 1
但我最终想要的是另一个DataFrame对象,它包含GroupBy对象中的所有行。换句话说,我想得到以下结果:
City Name
Name City
Alice Seattle 1 1
Bob Seattle 2 2
Mallory Portland 2 2
Mallory Seattle 1 1
我不太清楚如何在pandas文档中实现这一点。欢迎任何提示。
关键是使用reset_index()方法。
Use:
import pandas
df1 = pandas.DataFrame( {
"Name" : ["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"] ,
"City" : ["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"] } )
g1 = df1.groupby( [ "Name", "City"] ).count().reset_index()
现在你在g1中有了新的数据框架:
关键是使用reset_index()方法。
Use:
import pandas
df1 = pandas.DataFrame( {
"Name" : ["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"] ,
"City" : ["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"] } )
g1 = df1.groupby( [ "Name", "City"] ).count().reset_index()
现在你在g1中有了新的数据框架:
我发现这对我很有用。
import numpy as np
import pandas as pd
df1 = pd.DataFrame({
"Name" : ["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"] ,
"City" : ["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"]})
df1['City_count'] = 1
df1['Name_count'] = 1
df1.groupby(['Name', 'City'], as_index=False).count()
g1这里是一个数据帧。不过,它有一个层次索引:
In [19]: type(g1)
Out[19]: pandas.core.frame.DataFrame
In [20]: g1.index
Out[20]:
MultiIndex([('Alice', 'Seattle'), ('Bob', 'Seattle'), ('Mallory', 'Portland'),
('Mallory', 'Seattle')], dtype=object)
也许你想要这样的东西?
In [21]: g1.add_suffix('_Count').reset_index()
Out[21]:
Name City City_Count Name_Count
0 Alice Seattle 1 1
1 Bob Seattle 2 2
2 Mallory Portland 2 2
3 Mallory Seattle 1 1
或者像这样:
In [36]: DataFrame({'count' : df1.groupby( [ "Name", "City"] ).size()}).reset_index()
Out[36]:
Name City count
0 Alice Seattle 1
1 Bob Seattle 2
2 Mallory Portland 2
3 Mallory Seattle 1