我从这样的输入数据开始

df1 = pandas.DataFrame( { 
    "Name" : ["Alice", "Bob", "Mallory", "Mallory", "Bob" , "Mallory"] , 
    "City" : ["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"] } )

印刷出来时是这样的:

   City     Name
0   Seattle    Alice
1   Seattle      Bob
2  Portland  Mallory
3   Seattle  Mallory
4   Seattle      Bob
5  Portland  Mallory

分组非常简单:

g1 = df1.groupby( [ "Name", "City"] ).count()

打印产生一个GroupBy对象:

                  City  Name
Name    City
Alice   Seattle      1     1
Bob     Seattle      2     2
Mallory Portland     2     2
        Seattle      1     1

但我最终想要的是另一个DataFrame对象,它包含GroupBy对象中的所有行。换句话说,我想得到以下结果:

                  City  Name
Name    City
Alice   Seattle      1     1
Bob     Seattle      2     2
Mallory Portland     2     2
Mallory Seattle      1     1

我不太清楚如何在pandas文档中实现这一点。欢迎任何提示。


当前回答

也许我误解了这个问题,但如果你想将groupby转换回数据帧,你可以使用.to_frame()。当我这样做的时候,我想重置索引,所以我也包括了这一部分。

与问题无关的示例代码

df = df['TIME'].groupby(df['Name']).min()
df = df.to_frame()
df = df.reset_index(level=['Name',"TIME"])

其他回答

 grouped=df.groupby(['Team','Year'])['W'].count().reset_index()

 team_wins_df=pd.DataFrame(grouped)
 team_wins_df=team_wins_df.rename({'W':'Wins'},axis=1)
 team_wins_df['Wins']=team_wins_df['Wins'].astype(np.int32)
 team_wins_df.reset_index()
 print(team_wins_df)

我已经与Qty明智的数据聚合并存储到dataframe

almo_grp_data = pd.DataFrame({'Qty_cnt' :
almo_slt_models_data.groupby( ['orderDate','Item','State Abv']
          )['Qty'].sum()}).reset_index()

这将以与普通groupby()方法相同的顺序返回序数级/索引。它基本上与@NehalJWani在他的评论中发布的答案相同,但存储在一个变量中,并调用了reset_index()方法。

fare_class = df.groupby(['Satisfaction Rating','Fare Class']).size().to_frame(name = 'Count')
fare_class.reset_index()

这个版本不仅返回相同的百分比数据,这是有用的统计,而且还包括一个lambda函数。

fare_class_percent = df.groupby(['Satisfaction Rating', 'Fare Class']).size().to_frame(name = 'Percentage')
fare_class_percent.transform(lambda x: 100 * x/x.sum()).reset_index()

      Satisfaction Rating      Fare Class  Percentage
0            Dissatisfied        Business   14.624269
1            Dissatisfied         Economy   36.469048
2               Satisfied        Business    5.460425
3               Satisfied         Economy   33.235294

例子:

下面的解决方案可能更简单:

df1.reset_index().groupby( [ "Name", "City"],as_index=False ).count()

g1这里是一个数据帧。不过,它有一个层次索引:

In [19]: type(g1)
Out[19]: pandas.core.frame.DataFrame

In [20]: g1.index
Out[20]: 
MultiIndex([('Alice', 'Seattle'), ('Bob', 'Seattle'), ('Mallory', 'Portland'),
       ('Mallory', 'Seattle')], dtype=object)

也许你想要这样的东西?

In [21]: g1.add_suffix('_Count').reset_index()
Out[21]: 
      Name      City  City_Count  Name_Count
0    Alice   Seattle           1           1
1      Bob   Seattle           2           2
2  Mallory  Portland           2           2
3  Mallory   Seattle           1           1

或者像这样:

In [36]: DataFrame({'count' : df1.groupby( [ "Name", "City"] ).size()}).reset_index()
Out[36]: 
      Name      City  count
0    Alice   Seattle      1
1      Bob   Seattle      2
2  Mallory  Portland      2
3  Mallory   Seattle      1