我有一个熊猫数据框架,df_test。它包含一个列'size',以字节为单位表示大小。我已经计算了KB, MB和GB使用以下代码:
df_test = pd.DataFrame([
{'dir': '/Users/uname1', 'size': 994933},
{'dir': '/Users/uname2', 'size': 109338711},
])
df_test['size_kb'] = df_test['size'].astype(int).apply(lambda x: locale.format("%.1f", x / 1024.0, grouping=True) + ' KB')
df_test['size_mb'] = df_test['size'].astype(int).apply(lambda x: locale.format("%.1f", x / 1024.0 ** 2, grouping=True) + ' MB')
df_test['size_gb'] = df_test['size'].astype(int).apply(lambda x: locale.format("%.1f", x / 1024.0 ** 3, grouping=True) + ' GB')
df_test
dir size size_kb size_mb size_gb
0 /Users/uname1 994933 971.6 KB 0.9 MB 0.0 GB
1 /Users/uname2 109338711 106,776.1 KB 104.3 MB 0.1 GB
[2 rows x 5 columns]
我已经运行了超过120,000行,根据%timeit,每列大约需要2.97秒* 3 = ~9秒。
有什么办法能让它快点吗?例如,我可以从apply中一次返回一列并运行3次,我可以一次返回所有三列以插入到原始的数据框架中吗?
我发现的其他问题都希望接受多个值并返回一个值。我想取一个值并返回多个列。
我想在groupby上使用apply。我试着用你建议的方法。它确实对我有帮助,但不是全部。
添加result_type='expand'没有工作(因为我在系列上使用apply而不是DataFrame?)和zip(*___),我失去了索引。
如果其他人也有同样的问题,下面是我(最终)解决它的方法:
dfg = df.groupby(by=['Column1','Column2']).Column3.apply(myfunc)
dfres = pd.DataFrame()
dfres['a'], dfres['b'], dfres['c'] = (dfg.apply(lambda x: x[0]), dfg.apply(lambda x: x[1]), dfg.apply(lambda x: x[2]))
或者你知道更好的办法。告诉我。
如果这超出了我们讨论的范围,请告诉我。
You can go 40+ times faster than the top answers here if you do your math in numpy instead. Adapting @Rocky K's top two answers. The main difference is running on an actual df of 120k rows. Numpy is way faster at math when you apply your functions array-wise (instead of applying a function value-wise). The best answer is by far the third one because it uses numpy for the math. Also notice that it only calculates 1024**2 and 1024**3 once each instead of once for each row, saving 240k calculations. Here are the timings on my machine:
Tuples (pass value, return tuple then zip, new columns dont exist):
Runtime: 10.935037851333618
Tuples (pass value, return tuple then zip, new columns exist):
Runtime: 11.120025157928467
Use numpy for math portions:
Runtime: 0.24799370765686035
以下是我用来计算这些时间的脚本(改编自Rocky K):
import numpy as np
import pandas as pd
import locale
import time
size = np.random.random(120000) * 1000000000
data = pd.DataFrame({'Size': size})
def sizes_pass_value_return_tuple(value):
a = locale.format_string("%.1f", value / 1024.0, grouping=True) + ' KB'
b = locale.format_string("%.1f", value / 1024.0 ** 2, grouping=True) + ' MB'
c = locale.format_string("%.1f", value / 1024.0 ** 3, grouping=True) + ' GB'
return a, b, c
print('\nTuples (pass value, return tuple then zip, new columns dont exist):')
df1 = data.copy()
start = time.time()
df1['size_kb'], df1['size_mb'], df1['size_gb'] = zip(*df1['Size'].apply(sizes_pass_value_return_tuple))
end = time.time()
print('Runtime:', end - start, '\n')
print('Tuples (pass value, return tuple then zip, new columns exist):')
df2 = data.copy()
start = time.time()
df2 = pd.concat([df2, pd.DataFrame(columns=['size_kb', 'size_mb', 'size_gb'])])
df2['size_kb'], df2['size_mb'], df2['size_gb'] = zip(*df2['Size'].apply(sizes_pass_value_return_tuple))
end = time.time()
print('Runtime:', end - start, '\n')
print('Use numpy for math portions:')
df3 = data.copy()
start = time.time()
df3['size_kb'] = (df3.Size.values / 1024).round(1)
df3['size_kb'] = df3.size_kb.astype(str) + ' KB'
df3['size_mb'] = (df3.Size.values / 1024 ** 2).round(1)
df3['size_mb'] = df3.size_mb.astype(str) + ' MB'
df3['size_gb'] = (df3.Size.values / 1024 ** 3).round(1)
df3['size_gb'] = df3.size_gb.astype(str) + ' GB'
end = time.time()
print('Runtime:', end - start, '\n')
我相信1.1版本打破了上面答案中建议的行为。
import pandas as pd
def test_func(row):
row['c'] = str(row['a']) + str(row['b'])
row['d'] = row['a'] + 1
return row
df = pd.DataFrame({'a': [1, 2, 3], 'b': ['i', 'j', 'k']})
df.apply(test_func, axis=1)
上面的代码在pandas 1.1.0上运行返回:
a b c d
0 1 i 1i 2
1 1 i 1i 2
2 1 i 1i 2
而在熊猫1.0.5中,它返回:
a b c d
0 1 i 1i 2
1 2 j 2j 3
2 3 k 3k 4
我想这是你所期望的。
不确定发布说明如何解释这种行为,但是正如这里所解释的那样,通过复制原始行来避免突变,从而恢复旧的行为。例如:
def test_func(row):
row = row.copy() # <---- Avoid mutating the original reference
row['c'] = str(row['a']) + str(row['b'])
row['d'] = row['a'] + 1
return row