在Python中什么时候应该使用生成器表达式,什么时候应该使用列表推导式?
# Generator expression
(x*2 for x in range(256))
# List comprehension
[x*2 for x in range(256)]
在Python中什么时候应该使用生成器表达式,什么时候应该使用列表推导式?
# Generator expression
(x*2 for x in range(256))
# List comprehension
[x*2 for x in range(256)]
当前回答
重要的一点是,列表推导式创建了一个新列表。生成器创建一个可迭代对象,该对象将在您使用比特时实时“过滤”源材料。
假设您有一个名为“hugefile.txt”的2TB日志文件,您需要以单词“ENTRY”开头的所有行的内容和长度。
所以你可以试着从写一个列表理解开始:
logfile = open("hugefile.txt","r")
entry_lines = [(line,len(line)) for line in logfile if line.startswith("ENTRY")]
这将获取整个文件,处理每一行,并将匹配的行存储在数组中。因此,这个数组最多可以包含2TB的内容。这是一个很大的RAM,可能不适合您的目的。
因此,我们可以使用生成器对内容应用“过滤器”。直到我们开始对结果进行迭代,才实际读取数据。
logfile = open("hugefile.txt","r")
entry_lines = ((line,len(line)) for line in logfile if line.startswith("ENTRY"))
我们的文件连一行都没读过。事实上,假设我们想进一步过滤结果:
long_entries = ((line,length) for (line,length) in entry_lines if length > 80)
仍然没有读取任何数据,但是现在我们已经指定了两个生成器,它们将按照我们的意愿处理数据。
让我们把过滤后的行写入另一个文件:
outfile = open("filtered.txt","a")
for entry,length in long_entries:
outfile.write(entry)
现在我们读取输入文件。当我们的for循环继续请求额外的行时,long_entries生成器要求来自entry_lines生成器的行,只返回长度大于80个字符的行。然后,entry_lines生成器从logfile迭代器请求行(按指示过滤),然后logfile迭代器读取文件。
因此,您不是以完全填充的列表的形式将数据“推”到输出函数中,而是为输出函数提供了一种仅在需要时“拉”数据的方法。在我们的例子中,这更有效,但不那么灵活。生成器是单向的,一遍;我们读取的日志文件中的数据立即被丢弃,因此我们不能返回到前一行。另一方面,一旦我们处理完数据,我们就不必担心如何保存数据。
其他回答
当结果需要多次迭代时,或者在速度非常重要的情况下,使用列表推导式。在范围较大或无穷大的地方使用生成器表达式。
有关更多信息,请参阅生成器表达式和列表推导式。
有时候你可以在itertools中使用tee函数,它会为同一个生成器返回多个迭代器,这些迭代器可以独立使用。
Python 3.7:
列表推导更快。
生成器的内存效率更高。
正如其他人所说,如果你想要扩展无限的数据,你最终还是需要一个生成器。对于相对静态的、需要快速处理的中小型工作,最好是对清单进行理解。
我认为大多数答案都忽略了一点。列表推导式基本上创建一个列表并将其添加到堆栈中。在列表对象非常大的情况下,脚本进程将被杀死。在这种情况下,生成器更受欢迎,因为它的值不存储在内存中,而是存储为有状态函数。还有创造速度;列表理解比生成器理解慢
简而言之, 当obj的大小不是很大时,使用列表推导式,否则使用生成器推导式
遍历生成器表达式或列表推导式也会做同样的事情。但是,列表推导式将首先在内存中创建整个列表,而生成器表达式将动态地创建项,因此您可以将其用于非常大的(也是无限的!)序列。