在Python中什么时候应该使用生成器表达式,什么时候应该使用列表推导式?

# Generator expression
(x*2 for x in range(256))

# List comprehension
[x*2 for x in range(256)]

当前回答

对于函数式编程,我们希望使用尽可能少的索引。因此,如果我们想在获取元素的第一个切片后继续使用元素,islice()是一个更好的选择,因为迭代器状态会被保存。

from itertools import islice

def slice_and_continue(sequence):
    ret = []
    seq_i = iter(sequence) #create an iterator from the list

    seq_slice = islice(seq_i,3) #take first 3 elements and print
    for x in seq_slice: print(x),

    for x in seq_i: print(x**2), #square the rest of the numbers

slice_and_continue([1,2,3,4,5])

输出:1 2 3 16 25

其他回答

我正在使用Hadoop Mincemeat模块。我认为这是一个值得注意的好例子:

import mincemeat

def mapfn(k,v):
    for w in v:
        yield 'sum',w
        #yield 'count',1


def reducefn(k,v): 
    r1=sum(v)
    r2=len(v)
    print r2
    m=r1/r2
    std=0
    for i in range(r2):
       std+=pow(abs(v[i]-m),2)  
    res=pow((std/r2),0.5)
    return r1,r2,res

在这里,生成器从一个文本文件(最大15GB)中获取数字,并使用Hadoop的map-reduce对这些数字应用简单的数学运算。如果我没有使用yield函数,而是使用一个列表理解,那么计算总和和平均值将花费更长的时间(更不用说空间复杂性了)。

Hadoop是一个很好的例子,可以使用生成器的所有优点。

有时候你可以在itertools中使用tee函数,它会为同一个生成器返回多个迭代器,这些迭代器可以独立使用。

遍历生成器表达式或列表推导式也会做同样的事情。但是,列表推导式将首先在内存中创建整个列表,而生成器表达式将动态地创建项,因此您可以将其用于非常大的(也是无限的!)序列。

当从一个可变对象(比如一个列表)创建一个生成器时,请注意生成器将在使用生成器时根据列表的状态进行计算,而不是在创建生成器时:

>>> mylist = ["a", "b", "c"]
>>> gen = (elem + "1" for elem in mylist)
>>> mylist.clear()
>>> for x in gen: print (x)
# nothing

如果你的列表有可能被修改(或者列表中的一个可变对象),但你需要生成器创建时的状态,你需要使用列表理解。

对于函数式编程,我们希望使用尽可能少的索引。因此,如果我们想在获取元素的第一个切片后继续使用元素,islice()是一个更好的选择,因为迭代器状态会被保存。

from itertools import islice

def slice_and_continue(sequence):
    ret = []
    seq_i = iter(sequence) #create an iterator from the list

    seq_slice = islice(seq_i,3) #take first 3 elements and print
    for x in seq_slice: print(x),

    for x in seq_i: print(x**2), #square the rest of the numbers

slice_and_continue([1,2,3,4,5])

输出:1 2 3 16 25