我有一个Python命令行程序,需要一段时间才能完成。我想知道完成跑步所需的确切时间。
我看过timeit模块,但它似乎只适用于小代码片段。我想给整个节目计时。
我有一个Python命令行程序,需要一段时间才能完成。我想知道完成跑步所需的确切时间。
我看过timeit模块,但它似乎只适用于小代码片段。我想给整个节目计时。
当前回答
如果您想以微秒为单位测量时间,那么可以使用以下版本,完全基于Paul McGuire和Nicojo的答案——这是Python 3代码。我还为它添加了一些颜色:
import atexit
from time import time
from datetime import timedelta, datetime
def seconds_to_str(elapsed=None):
if elapsed is None:
return datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
else:
return str(timedelta(seconds=elapsed))
def log(txt, elapsed=None):
colour_cyan = '\033[36m'
colour_reset = '\033[0;0;39m'
colour_red = '\033[31m'
print('\n ' + colour_cyan + ' [TIMING]> [' + seconds_to_str() + '] ----> ' + txt + '\n' + colour_reset)
if elapsed:
print("\n " + colour_red + " [TIMING]> Elapsed time ==> " + elapsed + "\n" + colour_reset)
def end_log():
end = time()
elapsed = end-start
log("End Program", seconds_to_str(elapsed))
start = time()
atexit.register(end_log)
log("Start Program")
log()=>打印定时信息的函数。
txt==>要记录的第一个参数及其用于标记计时的字符串。
atexit==>Python模块,用于注册程序退出时可以调用的函数。
其他回答
对于函数,我建议使用我创建的这个简单的修饰符。
def timeit(method):
def timed(*args, **kwargs):
ts = time.time()
result = method(*args, **kwargs)
te = time.time()
if 'log_time' in kwargs:
name = kwargs.get('log_name', method.__name__.upper())
kwargs['log_time'][name] = int((te - ts) * 1000)
else:
print('%r %2.22f ms' % (method.__name__, (te - ts) * 1000))
return result
return timed
@timeit
def foo():
do_some_work()
# foo()
# 'foo' 0.000953 ms
我看过timeit模块,但它似乎只适用于小代码片段。我想给整个节目计时。
$ python -mtimeit -n1 -r1 -t -s "from your_module import main" "main()"
它运行一次your_module.main()函数,并使用time.time()函数作为计时器打印经过的时间。
要在Python中模拟/usr/bin/time,请参阅带有/usr/bin/time:如何捕获计时信息但忽略所有其他输出?的Python子进程?。
要测量每个函数的CPU时间(例如,不要包括time.sleep()期间的时间),可以使用profile模块(Python 2上的cProfile):
$ python3 -mprofile your_module.py
如果您想使用与配置文件模块相同的计时器,可以将-p传递给上面的timeit命令。
请参见如何评测Python脚本?
首先,以管理员身份打开命令提示符(CMD)并在那里键入,安装人性化的软件包-pip安装人性化
代码:
from humanfriendly import format_timespan
import time
begin_time = time.time()
# Put your code here
end_time = time.time() - begin_time
print("Total execution time: ", format_timespan(end_time))
输出:
我在查找两种不同方法的运行时间时遇到的问题,这两种方法用于查找所有<=一个数的素数。当在程序中进行用户输入时。
错误的方法
#Sample input for a number 20
#Sample output [2, 3, 5, 7, 11, 13, 17, 19]
#Total Running time = 0.634 seconds
import time
start_time = time.time()
#Method 1 to find all the prime numbers <= a Number
# Function to check whether a number is prime or not.
def prime_no(num):
if num<2:
return False
else:
for i in range(2, num//2+1):
if num % i == 0:
return False
return True
#To print all the values <= n
def Prime_under_num(n):
a = [2]
if n <2:
print("None")
elif n==2:
print(2)
else:
"Neglecting all even numbers as even numbers won't be prime in order to reduce the time complexity."
for i in range(3, n+1, 2):
if prime_no(i):
a.append(i)
print(a)
"When Method 1 is only used outputs of running time for different inputs"
#Total Running time = 2.73761 seconds #n = 100
#Total Running time = 3.14781 seconds #n = 1000
#Total Running time = 8.69278 seconds #n = 10000
#Total Running time = 18.73701 seconds #n = 100000
#Method 2 to find all the prime numbers <= a Number
def Prime_under_num(n):
a = [2]
if n <2:
print("None")
elif n==2:
print(2)
else:
for i in range(3, n+1, 2):
if n%i ==0:
pass
else:
a.append(i)
print(a)
"When Method 2 is only used outputs of running time for different inputs"
# Total Running time = 2.75935 seconds #n = 100
# Total Running time = 2.86332 seconds #n = 1000
# Total Running time = 4.59884 seconds #n = 10000
# Total Running time = 8.55057 seconds #n = 100000
if __name__ == "__main__" :
n = int(input())
Prime_under_num(n)
print("Total Running time = {:.5f} seconds".format(time.time() - start_time))
上述所有情况下获得的不同运行时间都是错误的。对于我们正在接受输入的问题,我们必须在接受输入后才开始计时。这里,用户键入输入所花费的时间也与运行时间一起计算。
正确的方法
我们必须从开头删除start_time=time.time()并将其添加到主块中。
if __name__ == "__main__" :
n = int(input())
start_time = time.time()
Prime_under_num(n)
print("Total Running time = {:.3f} seconds".format(time.time() - start_time))
因此,两种方法单独使用时的输出如下:-
# Method 1
# Total Running time = 0.00159 seconds #n = 100
# Total Running time = 0.00506 seconds #n = 1000
# Total Running time = 0.22987 seconds #n = 10000
# Total Running time = 18.55819 seconds #n = 100000
# Method 2
# Total Running time = 0.00011 seconds #n = 100
# Total Running time = 0.00118 seconds #n = 1000
# Total Running time = 0.00302 seconds #n = 10000
# Total Running time = 0.01450 seconds #n = 100000
现在我们可以看到,与错误方法相比,总运行时间有显著差异。即使方法2在两种方法中的性能优于方法1,但第一种方法(错误方法)是错误的。
Python中最简单的方法:
import time
start_time = time.time()
main()
print("--- %s seconds ---" % (time.time() - start_time))
这假设程序运行至少需要十分之一秒。
打印:
--- 0.764891862869 seconds ---