今天我需要一个简单的算法来检查一个数字是否是2的幂。

该算法需要:

简单的 适用于任何ulong值。

我想出了这个简单的算法:

private bool IsPowerOfTwo(ulong number)
{
    if (number == 0)
        return false;

    for (ulong power = 1; power > 0; power = power << 1)
    {
        // This for loop used shifting for powers of 2, meaning
        // that the value will become 0 after the last shift
        // (from binary 1000...0000 to 0000...0000) then, the 'for'
        // loop will break out.

        if (power == number)
            return true;
        if (power > number)
            return false;
    }
    return false;
}

但后来我想:如何检查log2x是否恰好是一个整数呢?当我检查2^63+1时,Math.Log()因为四舍五入而返回恰好63。我检查了2的63次方是否等于原来的数,结果是正确的,因为计算是双倍的,而不是精确的数字。

private bool IsPowerOfTwo_2(ulong number)
{
    double log = Math.Log(number, 2);
    double pow = Math.Pow(2, Math.Round(log));
    return pow == number;
}

这对于给定的错误值返回true: 9223372036854775809。

有没有更好的算法?


当前回答

如果一个数字只包含1个设置位,则它是2的幂。我们可以使用这个属性和泛型函数countSetBits来判断一个数字是否是2的幂。

这是一个c++程序:

int countSetBits(int n)
{
        int c = 0;
        while(n)
        {
                c += 1;
                n  = n & (n-1);
        }
        return c;
}

bool isPowerOfTwo(int n)
{        
        return (countSetBits(n)==1);
}
int main()
{
    int i, val[] = {0,1,2,3,4,5,15,16,22,32,38,64,70};
    for(i=0; i<sizeof(val)/sizeof(val[0]); i++)
        printf("Num:%d\tSet Bits:%d\t is power of two: %d\n",val[i], countSetBits(val[i]), isPowerOfTwo(val[i]));
    return 0;
}

我们不需要显式地检查0是否是2的幂,因为它对0也返回False。

输出

Num:0   Set Bits:0   is power of two: 0
Num:1   Set Bits:1   is power of two: 1
Num:2   Set Bits:1   is power of two: 1
Num:3   Set Bits:2   is power of two: 0
Num:4   Set Bits:1   is power of two: 1
Num:5   Set Bits:2   is power of two: 0
Num:15  Set Bits:4   is power of two: 0
Num:16  Set Bits:1   is power of two: 1
Num:22  Set Bits:3   is power of two: 0
Num:32  Set Bits:1   is power of two: 1
Num:38  Set Bits:3   is power of two: 0
Num:64  Set Bits:1   is power of two: 1
Num:70  Set Bits:3   is power of two: 0

其他回答

返回(i & -i) == i

改进@user134548的答案,不含比特算术:

public static bool IsPowerOfTwo(ulong n)
{
    if (n % 2 != 0) return false;  // is odd (can't be power of 2)

    double exp = Math.Log(n, 2);
    if (exp != Math.Floor(exp)) return false;  // if exp is not integer, n can't be power
    return Math.Pow(2, exp) == n;
}

这适用于:

IsPowerOfTwo(9223372036854775809)

例子

0000 0001    Yes
0001 0001    No

算法

使用位掩码,将变量以二进制形式除以NUM IF R > 0 AND L > 0:返回FALSE 否则,NUM变为非零 如果NUM = 1:返回TRUE 否则,请执行步骤1

复杂性

时间~ O(log(d)),其中d为二进制位数

一些网站记录并解释了这一点和其他一些无聊的黑客:

http://graphics.stanford.edu/~seander/bithacks.html (http://graphics.stanford.edu/ ~ seander / bithacks.html # DetermineIfPowerOf2) http://bits.stephan-brumme.com/ (http://bits.stephan-brumme.com/isPowerOfTwo.html)

他们的祖父,小亨利·沃伦(Henry Warren, Jr.)写的《黑客的喜悦》(Hacker’s Delight):

http://www.hackersdelight.org/

正如Sean Anderson的页面解释的那样,表达式((x & (x - 1)) == 0)错误地表明0是2的幂。他建议使用:

(!(x & (x - 1)) && x)

为了纠正这个问题。

int isPowerOfTwo(unsigned int x)
{
    return ((x != 0) && ((x & (~x + 1)) == x));
}

这真的很快。检查所有2^32个整数大约需要6分43秒。