在Python中对正则表达式使用compile有什么好处吗?

h = re.compile('hello')
h.match('hello world')

vs

re.match('hello', 'hello world')

当前回答

使用re.compile()还有一个额外的好处,即使用re.VERBOSE向正则表达式模式添加注释

pattern = '''
hello[ ]world    # Some info on my pattern logic. [ ] to recognize space
'''

re.search(pattern, 'hello world', re.VERBOSE)

虽然这不会影响代码的运行速度,但我喜欢这样做,因为这是我注释习惯的一部分。当我想要修改代码时,我完全不喜欢花时间去记住代码背后的逻辑。

其他回答

FWIW:

$ python -m timeit -s "import re" "re.match('hello', 'hello world')"
100000 loops, best of 3: 3.82 usec per loop

$ python -m timeit -s "import re; h=re.compile('hello')" "h.match('hello world')"
1000000 loops, best of 3: 1.26 usec per loop

因此,如果您将经常使用同一个正则表达式,可能值得执行re.compile(特别是对于更复杂的正则表达式)。

反对过早优化的标准论点适用,但如果您怀疑regexp可能成为性能瓶颈,我不认为使用re.compile会真正失去多少清晰度/直接性。

更新:

在Python 3.6(我怀疑上述计时是使用Python 2.x完成的)和2018硬件(MacBook Pro)下,我现在得到以下计时:

% python -m timeit -s "import re" "re.match('hello', 'hello world')"
1000000 loops, best of 3: 0.661 usec per loop

% python -m timeit -s "import re; h=re.compile('hello')" "h.match('hello world')"
1000000 loops, best of 3: 0.285 usec per loop

% python -m timeit -s "import re" "h=re.compile('hello'); h.match('hello world')"
1000000 loops, best of 3: 0.65 usec per loop

% python --version
Python 3.6.5 :: Anaconda, Inc.

我还添加了一个案例(注意最后两次运行之间的引号差异),表明re.match(x,…)从字面上[大致]等价于re.compile(x).match(…),即似乎没有发生编译表示的幕后缓存。

我有很多运行一个编译过的正则表达式和实时编译的经验,并没有注意到任何可感知的差异。显然,这只是传闻,当然也不是反对编译的有力论据,但我发现两者之间的差异可以忽略不计。

编辑: 在快速浏览了实际的Python 2.5库代码后,我发现无论何时使用正则表达式(包括调用re.match()), Python都会在内部编译和缓存正则表达式,因此实际上只在正则表达式被编译时进行更改,并且不应该节省太多时间——只节省检查缓存所需的时间(对内部dict类型的键查找)。

来自re.py模块(评论是我的):

def match(pattern, string, flags=0):
    return _compile(pattern, flags).match(string)

def _compile(*key):

    # Does cache check at top of function
    cachekey = (type(key[0]),) + key
    p = _cache.get(cachekey)
    if p is not None: return p

    # ...
    # Does actual compilation on cache miss
    # ...

    # Caches compiled regex
    if len(_cache) >= _MAXCACHE:
        _cache.clear()
    _cache[cachekey] = p
    return p

我仍然经常预编译正则表达式,但只是为了将它们绑定到一个漂亮的、可重用的名称,而不是为了任何预期的性能提升。

这个答案可能姗姗来迟,但却是一个有趣的发现。如果你打算多次使用regex,使用compile真的可以节省你的时间(这在文档中也有提到)。下面你可以看到,当直接调用match方法时,使用编译后的正则表达式是最快的。将一个编译好的正则表达式传递给re.match会使它更慢,而将re.match与patter字符串传递在中间的某个地方。

>>> ipr = r'\D+((([0-2][0-5]?[0-5]?)\.){3}([0-2][0-5]?[0-5]?))\D+'
>>> average(*timeit.repeat("re.match(ipr, 'abcd100.10.255.255 ')", globals={'ipr': ipr, 're': re}))
1.5077415757028423
>>> ipr = re.compile(ipr)
>>> average(*timeit.repeat("re.match(ipr, 'abcd100.10.255.255 ')", globals={'ipr': ipr, 're': re}))
1.8324008992184038
>>> average(*timeit.repeat("ipr.match('abcd100.10.255.255 ')", globals={'ipr': ipr, 're': re}))
0.9187896518778871

我真的很尊重上面所有的答案。在我看来 是的!当然,使用re.compile而不是一次又一次地编译正则表达式是值得的。

使用re.compile可以使代码更加动态,因为您可以调用已经编译好的正则表达式,而不是一次又一次地编译。这对你有好处:

处理器的努力 时间复杂度。 使正则表达式通用。(可以在findall, search, match中使用) 并使您的程序看起来很酷。

例子:

  example_string = "The room number of her room is 26A7B."
  find_alpha_numeric_string = re.compile(r"\b\w+\b")

在Findall中使用

 find_alpha_numeric_string.findall(example_string)

在搜索中使用

  find_alpha_numeric_string.search(example_string)

类似地,您可以将它用于:Match和Substitute

作为一个替代答案,正如我看到之前没有提到的,我将继续引用Python 3文档:

您是应该使用这些模块级函数,还是应该获取模式并自己调用它的方法?如果在循环中访问正则表达式,预编译它将节省一些函数调用。在循环之外,由于内部缓存,没有太大区别。