在Python中对正则表达式使用compile有什么好处吗?
h = re.compile('hello')
h.match('hello world')
vs
re.match('hello', 'hello world')
在Python中对正则表达式使用compile有什么好处吗?
h = re.compile('hello')
h.match('hello world')
vs
re.match('hello', 'hello world')
当前回答
在无意中看到这里的讨论之前,我运行了这个测试。然而,在运行它之后,我想我至少会发布我的结果。
我剽窃了Jeff Friedl的“精通正则表达式”中的例子。这是在一台运行OSX 10.6 (2Ghz英特尔酷睿2双核,4GB内存)的macbook上。Python版本为2.6.1。
运行1 -使用re.compile
import re
import time
import fpformat
Regex1 = re.compile('^(a|b|c|d|e|f|g)+$')
Regex2 = re.compile('^[a-g]+$')
TimesToDo = 1000
TestString = ""
for i in range(1000):
TestString += "abababdedfg"
StartTime = time.time()
for i in range(TimesToDo):
Regex1.search(TestString)
Seconds = time.time() - StartTime
print "Alternation takes " + fpformat.fix(Seconds,3) + " seconds"
StartTime = time.time()
for i in range(TimesToDo):
Regex2.search(TestString)
Seconds = time.time() - StartTime
print "Character Class takes " + fpformat.fix(Seconds,3) + " seconds"
Alternation takes 2.299 seconds
Character Class takes 0.107 seconds
运行2 -不使用re.compile
import re
import time
import fpformat
TimesToDo = 1000
TestString = ""
for i in range(1000):
TestString += "abababdedfg"
StartTime = time.time()
for i in range(TimesToDo):
re.search('^(a|b|c|d|e|f|g)+$',TestString)
Seconds = time.time() - StartTime
print "Alternation takes " + fpformat.fix(Seconds,3) + " seconds"
StartTime = time.time()
for i in range(TimesToDo):
re.search('^[a-g]+$',TestString)
Seconds = time.time() - StartTime
print "Character Class takes " + fpformat.fix(Seconds,3) + " seconds"
Alternation takes 2.508 seconds
Character Class takes 0.109 seconds
其他回答
我有很多运行编译过的regex 1000的经验 与实时编译相比,并没有注意到 任何可感知的差异
对已接受答案的投票导致假设@Triptych所说的对所有情况都是正确的。这并不一定是真的。一个很大的区别是当你必须决定是接受一个正则表达式字符串还是一个编译过的正则表达式对象作为函数的参数时:
>>> timeit.timeit(setup="""
... import re
... f=lambda x, y: x.match(y) # accepts compiled regex as parameter
... h=re.compile('hello')
... """, stmt="f(h, 'hello world')")
0.32881879806518555
>>> timeit.timeit(setup="""
... import re
... f=lambda x, y: re.compile(x).match(y) # compiles when called
... """, stmt="f('hello', 'hello world')")
0.809190034866333
编译正则表达式总是更好的,以防需要重用它们。
请注意,上面timeit中的示例模拟在导入时一次创建已编译的regex对象,而不是在需要匹配时“动态”创建。
下面是一个简单的测试用例:
~$ for x in 1 10 100 1000 10000 100000 1000000; do python -m timeit -n $x -s 'import re' 're.match("[0-9]{3}-[0-9]{3}-[0-9]{4}", "123-123-1234")'; done
1 loops, best of 3: 3.1 usec per loop
10 loops, best of 3: 2.41 usec per loop
100 loops, best of 3: 2.24 usec per loop
1000 loops, best of 3: 2.21 usec per loop
10000 loops, best of 3: 2.23 usec per loop
100000 loops, best of 3: 2.24 usec per loop
1000000 loops, best of 3: 2.31 usec per loop
re.compile:
~$ for x in 1 10 100 1000 10000 100000 1000000; do python -m timeit -n $x -s 'import re' 'r = re.compile("[0-9]{3}-[0-9]{3}-[0-9]{4}")' 'r.match("123-123-1234")'; done
1 loops, best of 3: 1.91 usec per loop
10 loops, best of 3: 0.691 usec per loop
100 loops, best of 3: 0.701 usec per loop
1000 loops, best of 3: 0.684 usec per loop
10000 loops, best of 3: 0.682 usec per loop
100000 loops, best of 3: 0.694 usec per loop
1000000 loops, best of 3: 0.702 usec per loop
因此,这种简单的情况下编译似乎更快,即使只匹配一次。
对我来说,re.compile的最大好处是能够将正则表达式的定义与其使用分开。
即使是一个简单的表达式,如0|[1-9][0-9]*(以10为基数,不带前导零的整数),也可能非常复杂,以至于您宁愿不重新输入它,检查是否有任何拼写错误,然后在开始调试时重新检查是否有拼写错误。另外,使用像num或num_b10这样的变量名比0|[1-9][0-9]*更好。
当然可以存储字符串并将它们传递给re.match;然而,这就不那么容易读了:
num = "..."
# then, much later:
m = re.match(num, input)
与编译:
num = re.compile("...")
# then, much later:
m = num.match(input)
虽然它很接近,但当重复使用时,第二句的最后一行感觉更自然、更简单。
(几个月后)很容易在re.match周围添加自己的缓存, 或者其他任何事情——
""" Re.py: Re.match = re.match + cache
efficiency: re.py does this already (but what's _MAXCACHE ?)
readability, inline / separate: matter of taste
"""
import re
cache = {}
_re_type = type( re.compile( "" ))
def match( pattern, str, *opt ):
""" Re.match = re.match + cache re.compile( pattern )
"""
if type(pattern) == _re_type:
cpat = pattern
elif pattern in cache:
cpat = cache[pattern]
else:
cpat = cache[pattern] = re.compile( pattern, *opt )
return cpat.match( str )
# def search ...
一个wibni,如果:cachehint(size=), cacheinfo() -> size, hits, nclear…
尽管这两种方法在速度方面是可以比较的,但是您应该知道,如果您正在处理数百万次迭代,那么仍然存在一些可以忽略不计的时间差。
以下速度测试:
import re
import time
SIZE = 100_000_000
start = time.time()
foo = re.compile('foo')
[foo.search('bar') for _ in range(SIZE)]
print('compiled: ', time.time() - start)
start = time.time()
[re.search('foo', 'bar') for _ in range(SIZE)]
print('uncompiled:', time.time() - start)
给出了以下结果:
compiled: 14.647532224655151
uncompiled: 61.483458042144775
编译后的方法在我的PC上(使用Python 3.7.0)始终快大约4倍。
如文档中所述:
如果在循环中访问正则表达式,预编译它将节省一些函数调用。在循环之外,由于内部缓存,没有太大区别。