在Python中对正则表达式使用compile有什么好处吗?
h = re.compile('hello')
h.match('hello world')
vs
re.match('hello', 'hello world')
在Python中对正则表达式使用compile有什么好处吗?
h = re.compile('hello')
h.match('hello world')
vs
re.match('hello', 'hello world')
当前回答
用下面的例子:
h = re.compile('hello')
h.match('hello world')
上面例子中的匹配方法和下面的不一样:
re.match('hello', 'hello world')
Re.compile()返回一个正则表达式对象,这意味着h是一个正则表达式对象。
regex对象有自己的匹配方法,带有可选的pos和endpos参数:
的。匹配(字符串[线程][线程]])
pos
可选的第二个参数pos给出了字符串中的一个索引 搜寻就要开始了;缺省值为0。这并不完全是 相当于对字符串进行切片;'^'模式字符匹配于 字符串的真正开始和在a之后的位置 换行符,但不一定在搜索到的索引处 开始。
尾部
可选参数endpos限制了字符串的长度 搜索;这就好像字符串有endpos个字符那么长 只搜索从pos到endpos - 1的字符 匹配。如果endpos小于pos,则找不到匹配;否则, 如果rx是编译后的正则表达式对象,则rx。搜索(字符串,0, 50)等于rx。搜索(字符串(:50),0)。
regex对象的search、findall和finditer方法也支持这些参数。
Re.match (pattern, string, flags=0)不支持,如你所见, 它的search、findall和finditer也没有。
match对象具有补充这些参数的属性:
match.pos
的search()或match()方法传递的pos的值 一个正则表达式对象。这是正则表达式所在字符串的索引 引擎开始寻找匹配。
match.endpos
传递给search()或match()方法的endpos值 正则表达式对象的。对象超出的字符串的索引 RE引擎不会去。
一个regex对象有两个唯一的,可能有用的属性:
regex.groups
模式中捕获组的数量。
regex.groupindex
将(?P)定义的任何符号组名映射到的字典 组数字。如果没有使用符号组,则字典为空 在模式中。
最后,match对象有这个属性:
match.re
其match()或search()方法的正则表达式对象 生成此匹配实例。
其他回答
尽管这两种方法在速度方面是可以比较的,但是您应该知道,如果您正在处理数百万次迭代,那么仍然存在一些可以忽略不计的时间差。
以下速度测试:
import re
import time
SIZE = 100_000_000
start = time.time()
foo = re.compile('foo')
[foo.search('bar') for _ in range(SIZE)]
print('compiled: ', time.time() - start)
start = time.time()
[re.search('foo', 'bar') for _ in range(SIZE)]
print('uncompiled:', time.time() - start)
给出了以下结果:
compiled: 14.647532224655151
uncompiled: 61.483458042144775
编译后的方法在我的PC上(使用Python 3.7.0)始终快大约4倍。
如文档中所述:
如果在循环中访问正则表达式,预编译它将节省一些函数调用。在循环之外,由于内部缓存,没有太大区别。
我真的很尊重上面所有的答案。在我看来 是的!当然,使用re.compile而不是一次又一次地编译正则表达式是值得的。
使用re.compile可以使代码更加动态,因为您可以调用已经编译好的正则表达式,而不是一次又一次地编译。这对你有好处:
处理器的努力 时间复杂度。 使正则表达式通用。(可以在findall, search, match中使用) 并使您的程序看起来很酷。
例子:
example_string = "The room number of her room is 26A7B."
find_alpha_numeric_string = re.compile(r"\b\w+\b")
在Findall中使用
find_alpha_numeric_string.findall(example_string)
在搜索中使用
find_alpha_numeric_string.search(example_string)
类似地,您可以将它用于:Match和Substitute
这个答案可能姗姗来迟,但却是一个有趣的发现。如果你打算多次使用regex,使用compile真的可以节省你的时间(这在文档中也有提到)。下面你可以看到,当直接调用match方法时,使用编译后的正则表达式是最快的。将一个编译好的正则表达式传递给re.match会使它更慢,而将re.match与patter字符串传递在中间的某个地方。
>>> ipr = r'\D+((([0-2][0-5]?[0-5]?)\.){3}([0-2][0-5]?[0-5]?))\D+'
>>> average(*timeit.repeat("re.match(ipr, 'abcd100.10.255.255 ')", globals={'ipr': ipr, 're': re}))
1.5077415757028423
>>> ipr = re.compile(ipr)
>>> average(*timeit.repeat("re.match(ipr, 'abcd100.10.255.255 ')", globals={'ipr': ipr, 're': re}))
1.8324008992184038
>>> average(*timeit.repeat("ipr.match('abcd100.10.255.255 ')", globals={'ipr': ipr, 're': re}))
0.9187896518778871
我有很多运行一个编译过的正则表达式和实时编译的经验,并没有注意到任何可感知的差异。显然,这只是传闻,当然也不是反对编译的有力论据,但我发现两者之间的差异可以忽略不计。
编辑: 在快速浏览了实际的Python 2.5库代码后,我发现无论何时使用正则表达式(包括调用re.match()), Python都会在内部编译和缓存正则表达式,因此实际上只在正则表达式被编译时进行更改,并且不应该节省太多时间——只节省检查缓存所需的时间(对内部dict类型的键查找)。
来自re.py模块(评论是我的):
def match(pattern, string, flags=0):
return _compile(pattern, flags).match(string)
def _compile(*key):
# Does cache check at top of function
cachekey = (type(key[0]),) + key
p = _cache.get(cachekey)
if p is not None: return p
# ...
# Does actual compilation on cache miss
# ...
# Caches compiled regex
if len(_cache) >= _MAXCACHE:
_cache.clear()
_cache[cachekey] = p
return p
我仍然经常预编译正则表达式,但只是为了将它们绑定到一个漂亮的、可重用的名称,而不是为了任何预期的性能提升。
我的理解是,这两个例子实际上是等价的。唯一的区别是,在第一种情况下,您可以在其他地方重用已编译的正则表达式,而不会导致再次编译它。
这里有一个参考:http://diveintopython3.ep.io/refactoring.html
使用字符串'M'调用已编译模式对象的搜索函数,其效果与同时使用正则表达式和字符串'M'调用re.search相同。只是要快得多。(事实上,re.search函数只是编译正则表达式,并为您调用结果模式对象的搜索方法。)