如何在Python中获取当前系统状态(当前CPU、RAM、空闲磁盘空间等)?理想情况下,它可以同时适用于Unix和Windows平台。

从我的搜索中似乎有一些可能的方法:

使用像PSI这样的库(目前似乎没有积极开发,在多个平台上也不支持)或像pystatgrab这样的库(从2007年开始似乎没有活动,也不支持Windows)。 使用平台特定的代码,例如使用os.popen("ps")或*nix系统的类似代码,以及ctypes.windll中的MEMORYSTATUS。Windows平台的kernel32(请参阅ActiveState上的配方)。可以将所有这些代码片段放在一个Python类中。

这并不是说这些方法不好,而是是否已经有一种支持良好的多平台方式来做同样的事情?


当前回答

为此,我们选择使用常用的信息源,因为我们可以发现空闲内存的瞬时波动,并且认为查询meminfo数据源是有帮助的。这也帮助我们获得了一些预先解析的相关参数。

Code

import os

linux_filepath = "/proc/meminfo"
meminfo = dict(
    (i.split()[0].rstrip(":"), int(i.split()[1]))
    for i in open(linux_filepath).readlines()
)
meminfo["memory_total_gb"] = meminfo["MemTotal"] / (2 ** 20)
meminfo["memory_free_gb"] = meminfo["MemFree"] / (2 ** 20)
meminfo["memory_available_gb"] = meminfo["MemAvailable"] / (2 ** 20)

输出参考(为了进一步分析,我们去掉了所有换行符)

MemTotal: 1014500 kB MemFree: 562680 kB MemAvailable: 646364 kB Buffers: 15144 kB Cached: 210720 kB SwapCached: 0 kB Active: 261476 kB Inactive: 128888 kB Active(anon): 167092 kB Inactive(anon): 20888 kB Active(file): 94384 kB Inactive(file): 108000 kB Unevictable: 3652 kB Mlocked: 3652 kB SwapTotal: 0 kB SwapFree: 0 kB Dirty: 0 kB Writeback: 0 kB AnonPages: 168160 kB Mapped: 81352 kB Shmem: 21060 kB Slab: 34492 kB SReclaimable: 18044 kB SUnreclaim: 16448 kB KernelStack: 2672 kB PageTables: 8180 kB NFS_Unstable: 0 kB Bounce: 0 kB WritebackTmp: 0 kB CommitLimit: 507248 kB Committed_AS: 1038756 kB VmallocTotal: 34359738367 kB VmallocUsed: 0 kB VmallocChunk: 0 kB HardwareCorrupted: 0 kB AnonHugePages: 88064 kB CmaTotal: 0 kB CmaFree: 0 kB HugePages_Total: 0 HugePages_Free: 0 HugePages_Rsvd: 0 HugePages_Surp: 0 Hugepagesize: 2048 kB DirectMap4k: 43008 kB DirectMap2M: 1005568 kB

其他回答

使用psutil库。在Ubuntu 18.04上,pip在2019年1月30日安装了5.5.0(最新版本)。旧版本的行为可能有所不同。 你可以在Python中这样做来检查你的psutil版本:

from __future__ import print_function  # for Python2
import psutil
print(psutil.__versi‌​on__)

获取内存和CPU的统计信息:

from __future__ import print_function
import psutil
print(psutil.cpu_percent())
print(psutil.virtual_memory())  # physical memory usage
print('memory % used:', psutil.virtual_memory()[2])

virtual_memory (tuple)将包含系统范围内使用的内存百分比。对我来说,在Ubuntu 18.04上,这似乎被高估了几个百分点。

你也可以得到当前Python实例所使用的内存:

import os
import psutil
pid = os.getpid()
python_process = psutil.Process(pid)
memoryUse = python_process.memory_info()[0]/2.**30  # memory use in GB...I think
print('memory use:', memoryUse)

它给出了Python脚本的当前内存使用情况。

pypi页面上有一些更深入的psutil示例。

你可以在subprocess中使用psutil或psmem 示例代码

import subprocess
cmd =   subprocess.Popen(['sudo','./ps_mem'],stdout=subprocess.PIPE,stderr=subprocess.PIPE) 
out,error = cmd.communicate() 
memory = out.splitlines()

参考

https://github.com/Leo-g/python-flask-cmd

你可以读取/proc/meminfo来获得使用的内存

file1 = open('/proc/meminfo', 'r') 

for line in file1: 
    if 'MemTotal' in line: 
        x = line.split()
        memTotal = int(x[1])
        
    if 'Buffers' in line: 
        x = line.split()
        buffers = int(x[1])
        
    if 'Cached' in line and 'SwapCached' not in line: 
        x = line.split()
        cached = int(x[1])
    
    if 'MemFree' in line: 
        x = line.split()
        memFree = int(x[1])

file1.close()

percentage_used = int ( ( memTotal - (buffers + cached + memFree) ) / memTotal * 100 )
print(percentage_used)

psutil库提供了各种平台上关于CPU、RAM等的信息:

psutil是一个模块,提供了一个接口,通过使用Python以可移植的方式检索正在运行的进程和系统利用率(CPU,内存)的信息,实现了ps、top和Windows任务管理器等工具提供的许多功能。 它目前支持Linux, Windows, OSX, Sun Solaris, FreeBSD, OpenBSD和NetBSD, 32位和64位架构,Python版本从2.6到3.5 (Python 2.4和2.5的用户可能使用2.1.3版本)。


一些例子:

#!/usr/bin/env python
import psutil
# gives a single float value
psutil.cpu_percent()
# gives an object with many fields
psutil.virtual_memory()
# you can convert that object to a dictionary 
dict(psutil.virtual_memory()._asdict())
# you can have the percentage of used RAM
psutil.virtual_memory().percent
79.2
# you can calculate percentage of available memory
psutil.virtual_memory().available * 100 / psutil.virtual_memory().total
20.8

以下是其他文档,提供了更多的概念和感兴趣的概念:

https://psutil.readthedocs.io/en/latest/

基于cpu使用代码@Hrabal,这是我使用的:

from subprocess import Popen, PIPE

def get_cpu_usage():
    ''' Get CPU usage on Linux by reading /proc/stat '''

    sub = Popen(('grep', 'cpu', '/proc/stat'), stdout=PIPE, stderr=PIPE)
    top_vals = [int(val) for val in sub.communicate()[0].split('\n')[0].split[1:5]]

    return (top_vals[0] + top_vals[2]) * 100. /(top_vals[0] + top_vals[2] + top_vals[3])