我有一个很大的数据集,我想阅读特定的列或放弃所有其他列。

data <- read.dta("file.dta")

我选择我不感兴趣的列:

var.out <- names(data)[!names(data) %in% c("iden", "name", "x_serv", "m_serv")]

然后我想做的事情是:

for(i in 1:length(var.out)) {
   paste("data$", var.out[i], sep="") <- NULL
}

删除所有不需要的列。这是最优解吗?


当前回答

你也可以尝试dplyr包:

R> df <- data.frame(x=1:5, y=2:6, z=3:7, u=4:8)
R> df
  x y z u
1 1 2 3 4
2 2 3 4 5
3 3 4 5 6
4 4 5 6 7
5 5 6 7 8
R> library(dplyr)
R> dplyr::select(df2, -c(x, y))  # remove columns x and y
  z u
1 3 4
2 4 5
3 5 6
4 6 7
5 7 8

其他回答

我试图在使用包数据时删除一列。表并得到了意想不到的结果。我觉得下面的内容可能值得发表。只是一个小警告。

[编辑:Matthew…]

DF = read.table(text = "
     fruit state grade y1980 y1990 y2000
     apples Ohio   aa    500   100   55
     apples Ohio   bb      0     0   44
     apples Ohio   cc    700     0   33
     apples Ohio   dd    300    50   66
", sep = "", header = TRUE, stringsAsFactors = FALSE)

DF[ , !names(DF) %in% c("grade")]   # all columns other than 'grade'
   fruit state y1980 y1990 y2000
1 apples  Ohio   500   100    55
2 apples  Ohio     0     0    44
3 apples  Ohio   700     0    33
4 apples  Ohio   300    50    66

library('data.table')
DT = as.data.table(DF)

DT[ , !names(dat4) %in% c("grade")]    # not expected !! not the same as DF !!
[1]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE

DT[ , !names(DT) %in% c("grade"), with=FALSE]    # that's better
    fruit state y1980 y1990 y2000
1: apples  Ohio   500   100    55
2: apples  Ohio     0     0    44
3: apples  Ohio   700     0    33
4: apples  Ohio   300    50    66

基本上就是数据的语法。table与data.frame并不完全相同。实际上有很多不同之处,参见FAQ 1.1和FAQ 2.17。我警告过你!

我不能在评论中回答你的问题,因为我的声誉评分很低。

下面的代码将给出一个错误,因为粘贴函数返回一个字符串

for(i in 1:length(var.out)) {
   paste("data$", var.out[i], sep="") <- NULL
}

这里有一个可能的解决方案:

for(i in 1:length(var.out)) {

  text_to_source <- paste0 ("data$", var.out[i], "<- NULL") # Write a line of your
                                                  # code like a character string
  eval (parse (text=text_to_source)) # Source a text that contains a code
}

或者直接做:

for(i in 1:length(var.out)) {
  data[var.out[i]] <- NULL
}
df2 <- df[!names(df) %in% c("c1", "c2")]

你也可以尝试dplyr包:

R> df <- data.frame(x=1:5, y=2:6, z=3:7, u=4:8)
R> df
  x y z u
1 1 2 3 4
2 2 3 4 5
3 3 4 5 6
4 4 5 6 7
5 5 6 7 8
R> library(dplyr)
R> dplyr::select(df2, -c(x, y))  # remove columns x and y
  z u
1 3 4
2 4 5
3 5 6
4 6 7
5 7 8

您应该使用索引或子集函数。例如:

R> df <- data.frame(x=1:5, y=2:6, z=3:7, u=4:8)
R> df
  x y z u
1 1 2 3 4
2 2 3 4 5
3 3 4 5 6
4 4 5 6 7
5 5 6 7 8

然后你可以在列索引中使用which函数和-运算符:

R> df[ , -which(names(df) %in% c("z","u"))]
  x y
1 1 2
2 2 3
3 3 4
4 4 5
5 5 6

或者,更简单的是,使用子集函数的select参数:然后可以直接对列名向量使用-运算符,甚至可以省略列名周围的引号!

R> subset(df, select=-c(z,u))
  x y
1 1 2
2 2 3
3 3 4
4 4 5
5 5 6

注意,你也可以选择你想要的列,而不是删除其他列:

R> df[ , c("x","y")]
  x y
1 1 2
2 2 3
3 3 4
4 4 5
5 5 6

R> subset(df, select=c(x,y))
  x y
1 1 2
2 2 3
3 3 4
4 4 5
5 5 6