我如何打印格式化的NumPy数组以类似于这样的方式:
x = 1.23456
print('%.3f' % x)
如果我想打印numpy。Ndarray的浮点数,它打印几个小数,通常是“科学”格式,即使对于低维数组也很难读取。然而,numpy。Ndarray显然必须被打印为字符串,即%s。有解决办法吗?
我如何打印格式化的NumPy数组以类似于这样的方式:
x = 1.23456
print('%.3f' % x)
如果我想打印numpy。Ndarray的浮点数,它打印几个小数,通常是“科学”格式,即使对于低维数组也很难读取。然而,numpy。Ndarray显然必须被打印为字符串,即%s。有解决办法吗?
当前回答
用np。Array_str只对单个打印语句应用格式化。它给出了np的一个子集。set_printoptions的功能。
例如:
In [27]: x = np.array([[1.1, 0.9, 1e-6]] * 3)
In [28]: print(x)
[[ 1.10000000e+00 9.00000000e-01 1.00000000e-06]
[ 1.10000000e+00 9.00000000e-01 1.00000000e-06]
[ 1.10000000e+00 9.00000000e-01 1.00000000e-06]]
In [29]: print(np.array_str(x, precision=2))
[[ 1.10e+00 9.00e-01 1.00e-06]
[ 1.10e+00 9.00e-01 1.00e-06]
[ 1.10e+00 9.00e-01 1.00e-06]]
In [30]: print(np.array_str(x, precision=2, suppress_small=True))
[[ 1.1 0.9 0. ]
[ 1.1 0.9 0. ]
[ 1.1 0.9 0. ]]
其他回答
这是我用的,它很简单:
print(np.vectorize("%.2f".__mod__)(sparse))
我使用
def np_print(array,fmt="10.5f"):
print (array.size*("{:"+fmt+"}")).format(*array)
对多维数组进行修改并不难。
Unutbu给出了一个非常完整的答案(他们也从我这里得到了+1),但这里有一个低科技的替代方案:
>>> x=np.random.randn(5)
>>> x
array([ 0.25276524, 2.28334499, -1.88221637, 0.69949927, 1.0285625 ])
>>> ['{:.2f}'.format(i) for i in x]
['0.25', '2.28', '-1.88', '0.70', '1.03']
作为函数(使用format()语法进行格式化):
def ndprint(a, format_string ='{0:.2f}'):
print [format_string.format(v,i) for i,v in enumerate(a)]
用法:
>>> ndprint(x)
['0.25', '2.28', '-1.88', '0.70', '1.03']
>>> ndprint(x, '{:10.4e}')
['2.5277e-01', '2.2833e+00', '-1.8822e+00', '6.9950e-01', '1.0286e+00']
>>> ndprint(x, '{:.8g}')
['0.25276524', '2.283345', '-1.8822164', '0.69949927', '1.0285625']
数组的索引可以在格式字符串中访问:
>>> ndprint(x, 'Element[{1:d}]={0:.2f}')
['Element[0]=0.25', 'Element[1]=2.28', 'Element[2]=-1.88', 'Element[3]=0.70', 'Element[4]=1.03']
很惊讶没有看到周围的方法提到-意思是没有搞乱打印选项。
import numpy as np
x = np.random.random([5,5])
print(np.around(x,decimals=3))
Output:
[[0.475 0.239 0.183 0.991 0.171]
[0.231 0.188 0.235 0.335 0.049]
[0.87 0.212 0.219 0.9 0.3 ]
[0.628 0.791 0.409 0.5 0.319]
[0.614 0.84 0.812 0.4 0.307]]
gem使它太容易获得字符串形式的结果(在今天的numpy版本中)隐藏在denis answer中: np.array2string
>>> import numpy as np
>>> x=np.random.random(10)
>>> np.array2string(x, formatter={'float_kind':'{0:.3f}'.format})
'[0.599 0.847 0.513 0.155 0.844 0.753 0.920 0.797 0.427 0.420]'