我有一个80%类别变量的机器学习分类问题。如果我想使用一些分类器进行分类,我必须使用一个热编码吗?我可以将数据传递给分类器而不进行编码吗?

我试图做以下的特征选择:

I read the train file: num_rows_to_read = 10000 train_small = pd.read_csv("../../dataset/train.csv", nrows=num_rows_to_read) I change the type of the categorical features to 'category': non_categorial_features = ['orig_destination_distance', 'srch_adults_cnt', 'srch_children_cnt', 'srch_rm_cnt', 'cnt'] for categorical_feature in list(train_small.columns): if categorical_feature not in non_categorial_features: train_small[categorical_feature] = train_small[categorical_feature].astype('category') I use one hot encoding: train_small_with_dummies = pd.get_dummies(train_small, sparse=True)

问题是,第三部分经常卡住,尽管我使用的是一个强大的机器。

因此,如果没有一个热编码,我就无法进行任何特征选择,以确定特征的重要性。

你有什么建议吗?


当前回答

这对我来说很管用:

pandas.factorize( ['B', 'C', 'D', 'B'] )[0]

输出:

[0, 1, 2, 0]

其他回答

熊猫的热编码非常简单:

def one_hot(df, cols):
    """
    @param df pandas DataFrame
    @param cols a list of columns to encode 
    @return a DataFrame with one-hot encoding
    """
    for each in cols:
        dummies = pd.get_dummies(df[each], prefix=each, drop_first=False)
        df = pd.concat([df, dummies], axis=1)
    return df

编辑:

使用sklearn的LabelBinarizer实现one_hot的另一种方法:

from sklearn.preprocessing import LabelBinarizer 
label_binarizer = LabelBinarizer()
label_binarizer.fit(all_your_labels_list) # need to be global or remembered to use it later

def one_hot_encode(x):
    """
    One hot encode a list of sample labels. Return a one-hot encoded vector for each label.
    : x: List of sample Labels
    : return: Numpy array of one-hot encoded labels
    """
    return label_binarizer.transform(x)

下面是使用DictVectorizer和Pandas datafframe .to_dict('records')方法的解决方案。

>>> import pandas as pd
>>> X = pd.DataFrame({'income': [100000,110000,90000,30000,14000,50000],
                      'country':['US', 'CAN', 'US', 'CAN', 'MEX', 'US'],
                      'race':['White', 'Black', 'Latino', 'White', 'White', 'Black']
                     })

>>> from sklearn.feature_extraction import DictVectorizer
>>> v = DictVectorizer()
>>> qualitative_features = ['country','race']
>>> X_qual = v.fit_transform(X[qualitative_features].to_dict('records'))
>>> v.vocabulary_
{'country=CAN': 0,
 'country=MEX': 1,
 'country=US': 2,
 'race=Black': 3,
 'race=Latino': 4,
 'race=White': 5}

>>> X_qual.toarray()
array([[ 0.,  0.,  1.,  0.,  0.,  1.],
       [ 1.,  0.,  0.,  1.,  0.,  0.],
       [ 0.,  0.,  1.,  0.,  1.,  0.],
       [ 1.,  0.,  0.,  0.,  0.,  1.],
       [ 0.,  1.,  0.,  0.,  0.,  1.],
       [ 0.,  0.,  1.,  1.,  0.,  0.]])

试试这个:

!pip install category_encoders
import category_encoders as ce

categorical_columns = [...the list of names of the columns you want to one-hot-encode ...]
encoder = ce.OneHotEncoder(cols=categorical_columns, use_cat_names=True)
df_train_encoded = encoder.fit_transform(df_train_small)

df_encoded.head ()

生成的数据框架df_train_encoded与原始数据框架相同,但是分类特征现在被它们的单热编码版本所取代。

更多关于category_encoders的信息请点击这里。

您可以使用numpy。眼睛的功能。

import numpy as np

def one_hot_encode(x, n_classes):
    """
    One hot encode a list of sample labels. Return a one-hot encoded vector for each label.
    : x: List of sample Labels
    : return: Numpy array of one-hot encoded labels
     """
    return np.eye(n_classes)[x]

def main():
    list = [0,1,2,3,4,3,2,1,0]
    n_classes = 5
    one_hot_list = one_hot_encode(list, n_classes)
    print(one_hot_list)

if __name__ == "__main__":
    main()

结果

D:\Desktop>python test.py
[[ 1.  0.  0.  0.  0.]
 [ 0.  1.  0.  0.  0.]
 [ 0.  0.  1.  0.  0.]
 [ 0.  0.  0.  1.  0.]
 [ 0.  0.  0.  0.  1.]
 [ 0.  0.  0.  1.  0.]
 [ 0.  0.  1.  0.  0.]
 [ 0.  1.  0.  0.  0.]
 [ 1.  0.  0.  0.  0.]]

我在我的声学模型中使用了这个: 也许这对你的模型有帮助。

def one_hot_encoding(x, n_out):
    x = x.astype(int)  
    shape = x.shape
    x = x.flatten()
    N = len(x)
    x_categ = np.zeros((N,n_out))
    x_categ[np.arange(N), x] = 1
    return x_categ.reshape((shape)+(n_out,))