我希望a四舍五入到13.95。我试过用圆形,但我得到:

>>> a
13.949999999999999
>>> round(a, 2)
13.949999999999999

有关标准库Decimal类的类似问题,请参阅How can I format a Decimal to always show 2 Decimal places?。


当前回答

为了修复Python和JavaScript等类型动态语言中的浮点,我使用了这种技术

# For example:
a = 70000
b = 0.14
c = a * b

print c # Prints 980.0000000002
# Try to fix
c = int(c * 10000)/100000
print c # Prints 980

您还可以按以下方式使用Decimal:

from decimal import *
getcontext().prec = 6
Decimal(1) / Decimal(7)
# Results in 6 precision -> Decimal('0.142857')

getcontext().prec = 28
Decimal(1) / Decimal(7)
# Results in 28 precision -> Decimal('0.1428571428571428571428571429')

其他回答

Use:

float_number = 12.234325335563
round(float_number, 2)

这将返回;

12.23

说明:

round函数接受两个参数;要舍入的数字和要返回的小数位数。这里我返回了两位小数。

你遇到了一个关于浮点数的老问题,不是所有的数字都能精确表示。命令行只是显示内存中的完整浮点形式。

对于浮点表示法,舍入版本是相同的数字。由于计算机是二进制的,它们将浮点数存储为整数,然后将其除以2的幂,因此13.95将以类似于125650429603636838/(2**53)的方式表示。

双精度数字的精度为53位(16位),常规浮点数的精度为24位(8位)。Python中的浮点类型使用双精度来存储值。

例如

>>> 125650429603636838/(2**53)
13.949999999999999

>>> 234042163/(2**24)
13.949999988079071

>>> a = 13.946
>>> print(a)
13.946
>>> print("%.2f" % a)
13.95
>>> round(a,2)
13.949999999999999
>>> print("%.2f" % round(a, 2))
13.95
>>> print("{:.2f}".format(a))
13.95
>>> print("{:.2f}".format(round(a, 2)))
13.95
>>> print("{:.15f}".format(round(a, 2)))
13.949999999999999

如果您只在小数点后两位(例如显示货币值),那么您有两个更好的选择:

使用整数并以美分而非美元存储值,然后除以100转换为美元。或者使用小数等固定点数。

TLDR;)

Python 3.1已经明确解决了输入和输出的舍入问题,该修复程序也被移植到Python 2.7.0。

舍入数字可以在浮点数和字符串之间来回转换:str->float()->repr()->float)。。。或Decimal->float->str->Decimal

>>> 0.3
0.3
>>> float(repr(0.3)) == 0.3
True

存储不再需要十进制类型。

算术运算的结果必须再次舍入,因为舍入误差可能累积的误差比解析一个数字后可能累积的更大。这不是通过改进的repr()算法解决的(Python>=3.1,>=2.7.0):

>>> 0.1 + 0.2
0.30000000000000004
>>> 0.1, 0.2, 0.3
(0.1, 0.2, 0.3)

在Python<2.7x和<3.1中,输出字符串函数str(float(…))被舍入为12个有效数字,以防止类似于未固定repr()输出的无效数字过多。在减去非常相似的数字之后,这仍然是不够的,并且在其他操作之后,它被舍入得太多。Python 2.7和3.1使用相同长度的str(),尽管repr()是固定的。一些旧版本的Numpy也有过多的无效数字,即使是固定的Python。当前Numpy是固定的。Python版本>=3.2中str()和repr()函数的结果相同,Numpy中也有类似函数的输出。


Test

import random
from decimal import Decimal
for _ in range(1000000):
    x = random.random()
    assert x == float(repr(x)) == float(Decimal(repr(x)))  # Reversible repr()
    assert str(x) == repr(x)
    assert len(repr(round(x, 12))) <= 14         # no excessive decimal places.

文档

请参阅发行说明Python 2.7-其他语言更改第四段:

在大多数平台上,浮点数和字符串之间的转换现在都可以正确舍入。这些转换发生在许多不同的地方:浮点和复数上的str();浮点和复杂的构造函数;数字格式;使用marshall、pickle和json模块对浮点数和复数进行序列化和反序列化;Python代码中浮点和虚文本的解析;以及十进制到浮点转换。与此相关,浮点数x的repr()现在返回一个基于最短十进制字符串的结果,该字符串保证在正确舍入(使用舍入半到偶数模式)下舍入回x。之前它给出了一个基于将x舍入到17位小数的字符串。

相关问题


更多信息:Python 2.7之前的float格式类似于当前的numpy.float64。两种类型使用相同的64位IEEE 754双精度和52位尾数。一个很大的区别是np.fat64.__repr_经常使用过量的十进制数字进行格式化,因此不会丢失任何位,但在13.949999999999999和13.95000000000001之间不存在有效的IEEE 754数字。结果不好,转换repr(float(number_as_string))不能用numpy可逆。另一方面:浮动__repr_的格式使得每个数字都很重要;序列是无间隙的,并且转换是可逆的。简单地说:如果您可能有一个numpy.float64数字,请将其转换为普通浮点,以便为人类而不是数字处理器格式化,否则Python 2.7+就不需要更多了。

lambda x, n:int(x*10^n + 0.5)/10^n

他为我工作了很多年,精通多种语言。

我看到的答案对浮点数(52.15)不起作用。经过一些测试,我使用的解决方案是:

import decimal
        
def value_to_decimal(value, decimal_places):
    decimal.getcontext().rounding = decimal.ROUND_HALF_UP  # define rounding method
    return decimal.Decimal(str(float(value))).quantize(decimal.Decimal('1e-{}'.format(decimal_places)))

(将“value”转换为float和string非常重要,这样一来,“value”可以是float、decimal、integer或string类型!)

希望这对任何人都有帮助。