我有经纬度,我想从数据库中提取记录,它有最近的经纬度,如果这个距离比指定的长,就不检索它。

表结构:

id
latitude
longitude
place name
city
country
state
zip
sealevel

当前回答

听起来你应该只使用PostGIS、SpatialLite、SQLServer2008或Oracle Spatial。它们都可以用空间SQL为您回答这个问题。

其他回答

下面是我用PHP实现的完整解决方案。

该解决方案使用http://www.scribd.com/doc/2569355/Geo-Distance-Search-with-MySQL中给出的Haversine公式。

值得注意的是,哈弗辛公式在极点处有弱点。这个答案展示了如何实现vincenty大圆距离公式来解决这个问题,但是我选择只使用Haversine,因为它足够适合我的目的。

我将纬度存储为DECIMAL(10,8),经度存储为DECIMAL(11,8)。希望这能有所帮助!

showClosest.php

<?PHP
/**
 * Use the Haversine Formula to display the 100 closest matches to $origLat, $origLon
 * Only search the MySQL table $tableName for matches within a 10 mile ($dist) radius.
 */
include("./assets/db/db.php"); // Include database connection function
$db = new database(); // Initiate a new MySQL connection
$tableName = "db.table";
$origLat = 42.1365;
$origLon = -71.7559;
$dist = 10; // This is the maximum distance (in miles) away from $origLat, $origLon in which to search
$query = "SELECT name, latitude, longitude, 3956 * 2 * 
          ASIN(SQRT( POWER(SIN(($origLat - latitude)*pi()/180/2),2)
          +COS($origLat*pi()/180 )*COS(latitude*pi()/180)
          *POWER(SIN(($origLon-longitude)*pi()/180/2),2))) 
          as distance FROM $tableName WHERE 
          longitude between ($origLon-$dist/cos(radians($origLat))*69) 
          and ($origLon+$dist/cos(radians($origLat))*69) 
          and latitude between ($origLat-($dist/69)) 
          and ($origLat+($dist/69)) 
          having distance < $dist ORDER BY distance limit 100"; 
$result = mysql_query($query) or die(mysql_error());
while($row = mysql_fetch_assoc($result)) {
    echo $row['name']." > ".$row['distance']."<BR>";
}
mysql_close($db);
?>

/资产/ db / db。php

<?PHP
/**
 * Class to initiate a new MySQL connection based on $dbInfo settings found in dbSettings.php
 *
 * @example $db = new database(); // Initiate a new database connection
 * @example mysql_close($db); // close the connection
 */
class database{
    protected $databaseLink;
    function __construct(){
        include "dbSettings.php";
        $this->database = $dbInfo['host'];
        $this->mysql_user = $dbInfo['user'];
        $this->mysql_pass = $dbInfo['pass'];
        $this->openConnection();
        return $this->get_link();
    }
    function openConnection(){
    $this->databaseLink = mysql_connect($this->database, $this->mysql_user, $this->mysql_pass);
    }

    function get_link(){
    return $this->databaseLink;
    }
}
?>

资产/ db - dbSettings。php

<?php
$dbInfo = array(
    'host'      => "localhost",
    'user'      => "root",
    'pass'      => "password"
);
?>

根据上面“使用MySQL进行地理距离搜索”文章的建议,可以通过使用MySQL存储过程来提高性能。

我有一个约17,000个位置的数据库,查询执行时间为0.054秒。

这个问题一点也不难,但是如果你需要优化它,它就会变得更加复杂。

我的意思是,你的数据库中有100个地点还是1亿个?这有很大的不同。

如果位置的数量很小,只需执行->,就可以将它们从SQL中取出并放入代码中

Select * from Location

一旦你把它们转换成代码,用哈弗辛公式计算出每一个纬度/长度与原始值之间的距离,然后排序。

Mysql查询搜索坐标的距离限制和条件

 SELECT id, ( 3959 * acos( cos( radians('28.5850154') ) * cos( radians(latitude) ) * cos( radians( longitude ) - radians('77.07207489999999') ) + sin( radians('28.5850154') ) * sin( radians( latitude ) ) ) ) AS distance FROM `vendors` HAVING distance < 5;
 +----+-----------------------+---------+--------------+---------------+
| id | email                 | name    | location_lat | location_long |
+----+-----------------------+---------+--------------+---------------+
| 7  | test@gmail.com        | rembo   | 23.0249256   |  72.5269697   |
| 25 | test1@gmail.com.      | Rajnis  | 23.0233221    | 72.5342112   |
+----+-----------------------+---------+--------------+---------------+

$lat = 23.02350629;

$long = 72.53230239;

DB:: 选择 (“ 选择 * 从 ( 选择 , ( (acos(sin)。决。”* pi(美元)/ 180)* sin (lat * pi(+) - 180)因为(”。拉丁语“圆周率(美元)/ 180)* cos (lat * pi () / 180) * cos(("。龙。”- long) * pi(美元)/ 180))* 180 / pi() * 60 * 1515 1。1 . 609344 ) 距离美国 从 \用户 ) \用户 在哪里 距离<= 2");

simpledb.execSQL("CREATE TABLE IF NOT EXISTS " + tablename + "(id INTEGER PRIMARY KEY   AUTOINCREMENT,lat double,lng double,address varchar)");
            simpledb.execSQL("insert into '" + tablename + "'(lat,lng,address)values('22.2891001','70.780154','craftbox');");
            simpledb.execSQL("insert into '" + tablename + "'(lat,lng,address)values('22.2901396','70.7782428','kotecha');");//22.2904718 //70.7783906
            simpledb.execSQL("insert into '" + tablename + "'(lat,lng,address)values('22.2863155','70.772108','kkv Hall');");
            simpledb.execSQL("insert into '" + tablename + "'(lat,lng,address)values('22.275993','70.778076','nana mava');");
            simpledb.execSQL("insert into '" + tablename + "'(lat,lng,address)values('22.2667148','70.7609386','Govani boys hostal');");


    double curentlat=22.2667258;  //22.2677258
    double curentlong=70.76096826;//70.76096826

    double curentlat1=curentlat+0.0010000;
    double curentlat2=curentlat-0.0010000;

    double curentlong1=curentlong+0.0010000;
    double curentlong2=curentlong-0.0010000;

    try{

        Cursor c=simpledb.rawQuery("select * from '"+tablename+"' where (lat BETWEEN '"+curentlat2+"' and '"+curentlat1+"') or (lng BETWEEN         '"+curentlong2+"' and '"+curentlong1+"')",null);

        Log.d("SQL ", c.toString());
        if(c.getCount()>0)
        {
            while (c.moveToNext())
            {
                double d=c.getDouble(1);
                double d1=c.getDouble(2);

            }
        }
    }
    catch (Exception e)
    {
        e.printStackTrace();
    }