我有一个大约有2000条记录的CSV文件。

每条记录都有一个字符串和一个类别:

This is the first line,Line1
This is the second line,Line2
This is the third line,Line3

我需要把这个文件读入一个列表,看起来像这样:

data = [('This is the first line', 'Line1'),
        ('This is the second line', 'Line2'),
        ('This is the third line', 'Line3')]

如何使用Python将此CSV导入到我需要的列表?


当前回答

不幸的是,我发现现有的答案没有一个特别令人满意。

这里是一个简单而完整的Python 3解决方案,使用csv模块。

import csv

with open('../resources/temp_in.csv', newline='') as f:
    reader = csv.reader(f, skipinitialspace=True)
    rows = list(reader)

print(rows)

注意skipinitialspace=True参数。这是必要的,因为不幸的是,OP的CSV在每个逗号后都包含空格。

输出:

[['This is the first line', 'Line1'], ['This is the second line', 'Line2'], ['This is the third line', 'Line3']]

其他回答

这是Python 3中最简单的方法。x导入CSV到多维数组,它只有4行代码,没有导入任何东西!

#pull a CSV into a multidimensional array in 4 lines!

L=[]                            #Create an empty list for the main array
for line in open('log.txt'):    #Open the file and read all the lines
    x=line.rstrip()             #Strip the \n from each line
    L.append(x.split(','))      #Split each line into a list and add it to the
                                #Multidimensional array
print(L)

使用csv模块:

import csv

with open('file.csv', newline='') as f:
    reader = csv.reader(f)
    data = list(reader)

print(data)

输出:

[['This is the first line', 'Line1'], ['This is the second line', 'Line2'], ['This is the third line', 'Line3']]

如果你需要元组:

import csv

with open('file.csv', newline='') as f:
    reader = csv.reader(f)
    data = [tuple(row) for row in reader]

print(data)

输出:

[('This is the first line', 'Line1'), ('This is the second line', 'Line2'), ('This is the third line', 'Line3')]

旧的Python 2答案,同样使用csv模块:

import csv
with open('file.csv', 'rb') as f:
    reader = csv.reader(f)
    your_list = list(reader)

print your_list
# [['This is the first line', 'Line1'],
#  ['This is the second line', 'Line2'],
#  ['This is the third line', 'Line3']]

不幸的是,我发现现有的答案没有一个特别令人满意。

这里是一个简单而完整的Python 3解决方案,使用csv模块。

import csv

with open('../resources/temp_in.csv', newline='') as f:
    reader = csv.reader(f, skipinitialspace=True)
    rows = list(reader)

print(rows)

注意skipinitialspace=True参数。这是必要的,因为不幸的是,OP的CSV在每个逗号后都包含空格。

输出:

[['This is the first line', 'Line1'], ['This is the second line', 'Line2'], ['This is the third line', 'Line3']]

Pandas非常擅长处理数据。下面是一个如何使用它的例子:

import pandas as pd

# Read the CSV into a pandas data frame (df)
#   With a df you can do many things
#   most important: visualize data with Seaborn
df = pd.read_csv('filename.csv', delimiter=',')

# Or export it in many ways, e.g. a list of tuples
tuples = [tuple(x) for x in df.values]

# or export it as a list of dicts
dicts = df.to_dict().values()

一个很大的优势是pandas自动处理标题行。

如果你没有听说过Seaborn,我建议你去看看。

请参见:如何使用Python读写CSV文件?

熊猫# 2

import pandas as pd

# Get data - reading the CSV file
import mpu.pd
df = mpu.pd.example_df()

# Convert
dicts = df.to_dict('records')

df的内容为:

     country   population population_time    EUR
0    Germany   82521653.0      2016-12-01   True
1     France   66991000.0      2017-01-01   True
2  Indonesia  255461700.0      2017-01-01  False
3    Ireland    4761865.0             NaT   True
4      Spain   46549045.0      2017-06-01   True
5    Vatican          NaN             NaT   True

词典的内容是

[{'country': 'Germany', 'population': 82521653.0, 'population_time': Timestamp('2016-12-01 00:00:00'), 'EUR': True},
 {'country': 'France', 'population': 66991000.0, 'population_time': Timestamp('2017-01-01 00:00:00'), 'EUR': True},
 {'country': 'Indonesia', 'population': 255461700.0, 'population_time': Timestamp('2017-01-01 00:00:00'), 'EUR': False},
 {'country': 'Ireland', 'population': 4761865.0, 'population_time': NaT, 'EUR': True},
 {'country': 'Spain', 'population': 46549045.0, 'population_time': Timestamp('2017-06-01 00:00:00'), 'EUR': True},
 {'country': 'Vatican', 'population': nan, 'population_time': NaT, 'EUR': True}]

熊猫# 3

import pandas as pd

# Get data - reading the CSV file
import mpu.pd
df = mpu.pd.example_df()

# Convert
lists = [[row[col] for col in df.columns] for row in df.to_dict('records')]

列表的内容是:

[['Germany', 82521653.0, Timestamp('2016-12-01 00:00:00'), True],
 ['France', 66991000.0, Timestamp('2017-01-01 00:00:00'), True],
 ['Indonesia', 255461700.0, Timestamp('2017-01-01 00:00:00'), False],
 ['Ireland', 4761865.0, NaT, True],
 ['Spain', 46549045.0, Timestamp('2017-06-01 00:00:00'), True],
 ['Vatican', nan, NaT, True]]

针对Python 3更新:

import csv

with open('file.csv', newline='') as f:
    reader = csv.reader(f)
    your_list = list(reader)

print(your_list)

输出:

[['This is the first line', 'Line1'], ['This is the second line', 'Line2'], ['This is the third line', 'Line3']]