让我们假设我们有一个数据集,它大概是

import numpy as np
x = np.linspace(0,2*np.pi,100)
y = np.sin(x) + np.random.random(100) * 0.2

Therefore we have a variation of 20% of the dataset. My first idea was to use the UnivariateSpline function of scipy, but the problem is that this does not consider the small noise in a good way. If you consider the frequencies, the background is much smaller than the signal, so a spline only of the cutoff might be an idea, but that would involve a back and forth fourier transformation, which might result in bad behaviour. Another way would be a moving average, but this would also need the right choice of the delay.

有什么提示/书籍或链接可以解决这个问题吗?


当前回答

在scipy中有一个简单的函数。Ndimage也适用于我:

from scipy.ndimage import uniform_filter1d

y_smooth = uniform_filter1d(y,size=15)

其他回答

使用移动平均线,一种快速的方法(也适用于非双射函数)是

def smoothen(x, winsize=5):
    return np.array(pd.Series(x).rolling(winsize).mean())[winsize-1:]

此代码基于https://towardsdatascience.com/data-smoothing-for-data-science-visualization-the-goldilocks-trio-part-1-867765050615。文中还讨论了更先进的解决方案。

如果你对周期信号的“平滑”版本感兴趣(就像你的例子),那么FFT是正确的方法。进行傅里叶变换并减去低贡献频率:

import numpy as np
import scipy.fftpack

N = 100
x = np.linspace(0,2*np.pi,N)
y = np.sin(x) + np.random.random(N) * 0.2

w = scipy.fftpack.rfft(y)
f = scipy.fftpack.rfftfreq(N, x[1]-x[0])
spectrum = w**2

cutoff_idx = spectrum < (spectrum.max()/5)
w2 = w.copy()
w2[cutoff_idx] = 0

y2 = scipy.fftpack.irfft(w2)

即使你的信号不是完全周期性的,这也能很好地去除白噪声。有许多类型的过滤器可以使用(高通,低通,等等…),合适的一个取决于你正在寻找什么。

如果您正在绘制时间序列图,并且如果您已经使用mtplotlib来绘制图形,那么请使用 中值方法平滑图

smotDeriv = timeseries.rolling(window=20, min_periods=5, center=True).median()

时间序列是您传递的数据集,您可以更改窗口大小以更平滑。

另一个选择是在statmodel中使用KernelReg:

from statsmodels.nonparametric.kernel_regression import KernelReg
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0,2*np.pi,100)
y = np.sin(x) + np.random.random(100) * 0.2

# The third parameter specifies the type of the variable x;
# 'c' stands for continuous
kr = KernelReg(y,x,'c')
plt.plot(x, y, '+')
y_pred, y_std = kr.fit(x)

plt.plot(x, y_pred)
plt.show()

编辑:看看这个答案。使用np。Cumsum比np.卷积快得多

我使用了一种快速而肮脏的方法来平滑数据,基于移动平均盒(通过卷积):

x = np.linspace(0,2*np.pi,100)
y = np.sin(x) + np.random.random(100) * 0.8

def smooth(y, box_pts):
    box = np.ones(box_pts)/box_pts
    y_smooth = np.convolve(y, box, mode='same')
    return y_smooth

plot(x, y,'o')
plot(x, smooth(y,3), 'r-', lw=2)
plot(x, smooth(y,19), 'g-', lw=2)