让我们假设我们有一个数据集,它大概是

import numpy as np
x = np.linspace(0,2*np.pi,100)
y = np.sin(x) + np.random.random(100) * 0.2

Therefore we have a variation of 20% of the dataset. My first idea was to use the UnivariateSpline function of scipy, but the problem is that this does not consider the small noise in a good way. If you consider the frequencies, the background is much smaller than the signal, so a spline only of the cutoff might be an idea, but that would involve a back and forth fourier transformation, which might result in bad behaviour. Another way would be a moving average, but this would also need the right choice of the delay.

有什么提示/书籍或链接可以解决这个问题吗?


当前回答

如果您正在绘制时间序列图,并且如果您已经使用mtplotlib来绘制图形,那么请使用 中值方法平滑图

smotDeriv = timeseries.rolling(window=20, min_periods=5, center=True).median()

时间序列是您传递的数据集,您可以更改窗口大小以更平滑。

其他回答

如果你对周期信号的“平滑”版本感兴趣(就像你的例子),那么FFT是正确的方法。进行傅里叶变换并减去低贡献频率:

import numpy as np
import scipy.fftpack

N = 100
x = np.linspace(0,2*np.pi,N)
y = np.sin(x) + np.random.random(N) * 0.2

w = scipy.fftpack.rfft(y)
f = scipy.fftpack.rfftfreq(N, x[1]-x[0])
spectrum = w**2

cutoff_idx = spectrum < (spectrum.max()/5)
w2 = w.copy()
w2[cutoff_idx] = 0

y2 = scipy.fftpack.irfft(w2)

即使你的信号不是完全周期性的,这也能很好地去除白噪声。有许多类型的过滤器可以使用(高通,低通,等等…),合适的一个取决于你正在寻找什么。

你也可以用这个:

def smooth(scalars, weight = 0.8):  # Weight between 0 and 1
        return [scalars[i] * weight + (1 - weight) * scalars[i+1] for i in range(len(scalars)) if i < len(scalars)-1]

为你的数据拟合一个移动平均线可以消除噪音,看看这个如何做到这一点的答案。

如果你想使用LOWESS来拟合你的数据(它类似于移动平均,但更复杂),你可以使用statmodels库:

import numpy as np
import pylab as plt
import statsmodels.api as sm

x = np.linspace(0,2*np.pi,100)
y = np.sin(x) + np.random.random(100) * 0.2
lowess = sm.nonparametric.lowess(y, x, frac=0.1)

plt.plot(x, y, '+')
plt.plot(lowess[:, 0], lowess[:, 1])
plt.show()

最后,如果你知道信号的函数形式,你就可以为你的数据拟合曲线,这可能是最好的办法。

我喜欢Savitzky-Golay滤镜。它使用最小二乘将数据的一个小窗口回归到一个多项式上,然后使用多项式来估计窗口中心的点。最后,窗口向前移动一个数据点,然后重复这个过程。这一直持续到每个点都相对于它的邻居进行了最佳调整。即使是非周期和非线性源的噪声样本,它也能很好地工作。

下面是一个完整的食谱示例。请参阅下面的代码,了解它使用起来有多简单。注意:我省略了定义savitzky_golay()函数的代码,因为您可以从上面链接的烹饪书示例中复制/粘贴它。

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0,2*np.pi,100)
y = np.sin(x) + np.random.random(100) * 0.2
yhat = savitzky_golay(y, 51, 3) # window size 51, polynomial order 3

plt.plot(x,y)
plt.plot(x,yhat, color='red')
plt.show()

更新:我注意到我链接的食谱例子已经被撤下了。幸运的是,正如@dodohjk(感谢@bicarlsen提供的更新链接)指出的那样,Savitzky-Golay过滤器已经被合并到SciPy库中。 要使用SciPy源代码调整上面的代码,输入:

from scipy.signal import savgol_filter
yhat = savgol_filter(y, 51, 3) # window size 51, polynomial order 3

另一个选择是在statmodel中使用KernelReg:

from statsmodels.nonparametric.kernel_regression import KernelReg
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0,2*np.pi,100)
y = np.sin(x) + np.random.random(100) * 0.2

# The third parameter specifies the type of the variable x;
# 'c' stands for continuous
kr = KernelReg(y,x,'c')
plt.plot(x, y, '+')
y_pred, y_std = kr.fit(x)

plt.plot(x, y_pred)
plt.show()